Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-04T03:05:38.012Z Has data issue: false hasContentIssue false

Electrical Characteristics of TaOxNy for High-k MOS Gate Dielectric Applications

Published online by Cambridge University Press:  14 March 2011

Kiju Im
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, #1, Oryong-dong, Puk-gu, Kwangju, 500-712, KOREA
Hyungsuk Jung
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, #1, Oryong-dong, Puk-gu, Kwangju, 500-712, KOREA
Sanghun Jeon
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, #1, Oryong-dong, Puk-gu, Kwangju, 500-712, KOREA
Dooyoung Yang
Affiliation:
Jusung Engineering, #49, Neungpyeong, Opo, Kwangju-gun, Kyunggi, 464-890, KOREA
Hyunsang Hwang
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, #1, Oryong-dong, Puk-gu, Kwangju, 500-712, KOREA
Get access

Abstract

In this paper, we report a process for the preparation of high quality amorphous tantalum oxynitride (TaOxNy) via ammonia annealing of Ta2O5 followed by wet reoxidation for use in gate dielectric applications. Compared with tantalum oxide(Ta2O5), a significant improvement in the dielectric constant was obtained by the ammonia treatment followed by light reoxidation in a wet ambient. We confirmed nitrogen incorporation in the tantalum oxynitride (TaOxNy) by Auger Electron Spectroscopy. By optimizing the nitridation and reoxidation process, we obtained an equivalent oxide thickness of less than 1.6nm and a leakage current of less than 10mA/cm2 at -1.5V. Compared with NH3 nitridation, nitridation of Ta2O5 in ND3 improve charge trapping and charge-to-breakdown characteristics of tantalum oxynitride.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Semiconductor Industry Association, The International Technology Roadmap for Semiconductor, 1999.Google Scholar
2. Lu, Q., Park, D., Kalnitsky, A., Chang, C., Cheng, C. C., Tay, S. P. King, T. J. and Hu, C., IEEE Electron Device Lett., 19, 341, (1998).Google Scholar
3. kizilyalli, I. C., Huang, R. Y. S. and Roy, P. K., IEEE Electron Device Lett., 19, 423, (1998).10.1109/55.728900Google Scholar
4. Alers, G. B., Fleming, R. M., Wong, Y. H., Dennis, B. and Pinczuk, A., Redinbo, G., Urdahl, R., ong, E., and Hasan, Z., Appl. Phys. Lett., 72, 1308, (1998).10.1063/1.120569Google Scholar
5. Lin, J., Massaki, N., Tsukune, A. and Yamada, M., Appl. Phys. Lett., 74, 2370, (1999).10.1063/1.123854Google Scholar
6. Park, S. W., Baek, Y. K., Lee, J. Y., Park, C.O., and Im, H. B., J.Electron Mat. Vol.21 No.6, 1992 Google Scholar
7. Henson, W. K., Ahmed, K. Z., Vogel, E. M., Hauser, J. R., Wortman, J. J., Venables, R. D., Xu, M., and Venable, D., IEEE Electron Device Lett., 20, 179, (1999).10.1109/55.753759Google Scholar
8. Alers, G. B., Werder, D. J., Chabal, Y., Lu, H. C., Gusev, E. P., Garfunkel, E., Gustafsson, T., and Urdahl, R. S., Appl. Phys. Lett., 73, 1517, (1998).10.1063/1.122191Google Scholar
9. Kwon, H. and Hwang, H., Appl. Phys. Lett., 76, 772, (2000).10.1063/1.125890Google Scholar