Skip to main content Accessibility help
×
Home

Electrical and Optical Modelling of Thin-Film Silicon Solar Cells

  • Miro Zeman (a1) and Janez Krc (a1)

Abstract

Today amorphous and microcrystalline silicon based solar cells use surface-textured substrates for enhancing the light absorption and buffer and graded layers in order to improve the overall performance of the cells. Tandem and triple-junction configurations are utilized to assure better use of the solar spectrum and, thus, achieve higher conversion efficiencies of the devices. Resulting structures of the solar cells are complex and computer modeling has become an essential tool for a detailed understanding and further optimization of their optical and electrical behavior.

The performance limits of tandem and triple-junction silicon based solar cells are studied by simulations using the optical simulator SunShine developed at Ljubljana University and the opto-electrical simulator ASA developed at Delft University of Technology. First, both simulators were calibrated with realistic optical and electrical parameters. Then, they were used to study the required scattering properties, absorption in non-active layers, antireflective coatings, the crucial role of the wavelength selective intermediate reflector, and a careful current matching in order to indicate the way for achieving a high photocurrent, more than 15 mA/cm2 for a tandem a-Si:H/ìc-Si:H and 11 mA/cm2 for a triple-junction a-Si:H/a-SiGe:H/ìc-Si:H solar cells. By optimizing electrical properties of the layers and interfaces, for example using a p-doped a-SiC layer with a larger band gap (EG > 2 eV) and introducing buffer layers at p/i interfaces, the extraction of the charge carriers, the open-circuit voltage and the fill factor of the solar cells are improved. The potential for achieving the conversion efficiency over 15% for the a-Si:H/ìc-Si:H and 17 % for the triple-junction a-Si:H/a-SiGe:H/ìc-Si:H solar cells is demonstrated.

Copyright

References

Hide All
4 Burgelman, M., Verschraegen, J., Degrave, S. and Nollet, P., Prog. Photovolt: Res. Appl. 12, 143153 (2004).
5 Arch, J. K., Rubinelli, F. A., Hou, J.-Y., and Fonash, S. J., J. Appl. Phys. 69, 7674 (1991).
6 Topic, M., Smole, F., and Furlan, J., J. Appl. Phys., 79 (1996) 8537.
7 Zeman, M., Willemen, J.A., Vosteen, L.L.A., Tao, G. and Metselaar, J.W., Solar Energy Materials and Solar Cells 46, 81 (1997).
8 Burgelman, M., Nollet, P., Degrave, S., Thin Solid Films 361 – 362, 527 (2000).
9 Froitzheim, A., Stangl, R., Elstner, L., Kriegel, M., Fuhs, W., Proc. 3rd WCPEC, Osaka, Japan, 2003, 1P-D3-34.
10 Sawada, T., Tarui, H., Terada, N., Tanaka, M., Takahama, T., Tsuda, S. and Nakano, S., Proc. 23rd IEEE PVSC, Louisville, KY, 1993, p. 803.
11 Fantoni, A., Vieira, M., Cruz, J., Schwarz, R. and Martins, R., J. Phys. D: Appl. Phys. 29, 3154 (1996).
12 Zimmer, J., Stiebig, H., and Wagner, H., Mat. Res. Soc. Proc. 507, Warrendale, PA, 1998, p. 377
13 Furlan, J., Amon, S., Popovič, P., Smole, F., Proc. 1st WCPEC-1, Hawaii, USA, (1994) p. 658.
14 Haase, Ch. and Stiebig, H., Proc. 21st EU PVSEC, Dresden, Germany, 2006, p. 1712.
15 Brecl, K., Fischer, D., Smole, F., Topic, M., Proc. 21th EU PVSEC, Dresden, Germany, 2006, p. 1662
16 Krc, J., Smole, F., Topic, M., Prog. in Photovolt: Res. Appl. 11, 15 (2003).
17 Schropp, R.I.E. and Zeman, M., Amorphous and Microcrystalline Solar Cells: Modeling, Materials, and Device Technology, (Kluwer Academic Publishers, 1998).
18 Leblanc, F., Perrin, J., Schmitt, J., J. Appl. Phys. 75, 1074 (1994).
19ASA simulator, User’s manual v5.0, Delft University of Technology, 2005.
20 Springer, J., Poruba, A., and Vanecek, M., J. Appl. Phys. 96, 5329 (2004).
21 Mueller, J., Rech, B., Springer, J., and Vanecek, M., Solar Energy Materials and Solar Cells 77, 917 (2004).
22 Zeman, M., Swaaij, R.A.C.M.M. van, Metselaar, J.W., and Schropp, R.E.I., J. Appl. Phys. 88, 6436 (2000).
23 Krc, J., Zeman, M., Kluth, O., Smole, F., Topic, M., Thin Solid Films 426, 296 (2003).
24 Fischer, D. et al., Proc. 25th IEEE PVSC, Washington, DC, 1996, p. 1053.
25 Yamamoto, K. et al., Proc. 15th PVSEC, Shanghai, China, 2005, p. 529
26 Guha, S. et al., Proc. 15th PVSEC, Shanghai, China, 2005, p. 35.
27 Shah, A. et al., Prog. in Photovolt: Res. Appl. 12, 113 (2004).
28 Meier, J., Spitznagel, J., Kroll, U., Bucher, C., Fay, S., Moriarty, T., Shah, A., Thin Solid Films 451-542, 518 (2004).
29 Krc, J., Zeman, M., Campa, A., Smole, F., Topic, M., Mater. Res. Soc. Proc. 910, Warrendale, PA, 2006, A25.1.
30 Selvan, J.A. Anna, Delahoy, A.E., Guo, S., Li, Y., Proc. 14th PVSEC, Bangkok, Thailand, 2004, p. 179.
31 Kondo, M. et al., Proc. 15th PVSEC, Shanghai, China (2005), 43–4.

Keywords

Electrical and Optical Modelling of Thin-Film Silicon Solar Cells

  • Miro Zeman (a1) and Janez Krc (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed