Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-26T05:07:11.740Z Has data issue: false hasContentIssue false

Electric Field Induced Heating and Energy Relaxation in GaN

Published online by Cambridge University Press:  21 March 2011

T. A. Eckhause
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
Ö. Süzer
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
Ç. Kurdak
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
F. Yun
Affiliation:
Department of Electrical Engineering, Virginia Commonwealth University, Richmond, VA 23284
H. Morkoç
Affiliation:
Department of Electrical Engineering, Virginia Commonwealth University, Richmond, VA 23284
Get access

Abstract

We report results of an investigation of electric field induced heating at low temperature in GaN 3-dimensional electron gas films grown on sapphire substrates. The excess noise of the electron gas in a patterned GaN film, while the substrate is held at low temperature, is used to determine the electron temperature. We calculate the rate of power dissipation and compare our results with a calculation of acoustic deformation potential scattering processes in GaN. We discuss the existence of a thermal boundary resistance between the GaN film and the sapphire substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
[2]Kim, W., Aktas, O., Salvador, A., Botchkarev, A., Sverdlov, B., Mohammad, S. N. and Morkoç, H., Solid State Electronics 41, 169175, (1997).Google Scholar
[3] Shah, J., Pinczuk, A., Strömer, H. L., Gossard, A. C., and Wiegmann, W., Appl. Phys. Lett 44, 322324 (1984).Google Scholar
[4] Kurdak, C., Tsui, D., Parihar, S., Lyon, S., and Shayegan, M., Appl. Phys. Lett. 67, 386388 (1995).Google Scholar
[5] Price, P. J., J. Appl. Phys. 53, 68636866 (1982).Google Scholar
[6] Sakaki, H., Hirakawa, K., Yoshino, J., Svensson, S. P., Sekiguchi, Y, Hotta, T., Nishii, S., and Miura, N., Surface Science 142, 306313 (1984).Google Scholar
[7] Hirakawa, K., Grayson, M., Tsui, D. C., and Kurdak, C., Phys. Rev. B 47, 1665116654 (1993).Google Scholar
[8] Zhu, C. F., Fong, W. K., Leung, B. H., Cheng, C. C., and Surya, C., Mat. Res. Soc. Symp. 622, T6.23.1–T6.23.6 (2000).Google Scholar
[9] Seeger, K., Semiconductor Physics: an introduction, (Springer Verlag, New York 1991). See especially section 6.5 and equation 6.5.19 in the degenerate electron limit.Google Scholar
[10] Roukes, M. L. in Noise in Physical Systems, edited by Vliet, C. M. Van, (World Scientific, Singapore, 1987), pp. 595604.Google Scholar