Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T18:04:23.123Z Has data issue: false hasContentIssue false

EIS studies of anodic aluminum oxide films

Published online by Cambridge University Press:  27 March 2012

Evelina M. Linardi
Affiliation:
Unidad de Actividad Materiales - Centro Atómico Constituyentes - CNEA - Av. Gral. Paz 1499 (B1650KNA) - San Martín - Buenos Aires - Argentina
Liliana A. Lanzani
Affiliation:
Unidad de Actividad Materiales - Centro Atómico Constituyentes - CNEA - Av. Gral. Paz 1499 (B1650KNA) - San Martín - Buenos Aires - Argentina
Juan R. Collet Lacoste
Affiliation:
Unidad de Actividad Materiales - Centro Atómico Constituyentes - CNEA - Av. Gral. Paz 1499 (B1650KNA) - San Martín - Buenos Aires - Argentina
Get access

Abstract

Samples of AA 6061 alloy and Al 5N were anodized at constant potential conditions and sealed in distilled boiling water. Immersion tests in high purity water were also carried out on AA 6061 samples at open circuit potential. EIS measurements were then performed in order to investigate the properties of the oxides obtained.

For sealed anodic oxides on AA 6061 and Al 5N, EIS experimental data was useful to differentiate between the capacitances of the two layers present in the oxide, named the barrier and porous layers. EIS data obtained for oxide layers grown at open circuit potential in AA 6061 allowed estimating the capacitance of the barrier layer, which value was greater than the barrier layer capacitance present in anodic oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. García-Rubio, M., Ocón, P., Curioni, M., Thompson, G.E., Skeldon, P., Lavía, A. and García, I., Corros. Sci. 52, 2219 (2010).10.1016/j.corsci.2010.03.004Google Scholar
2. Mansfeld, F., Zhang, G. and Chen, C., Plating and Surface Finishing 84, 72 (1997).Google Scholar
3. Debuyck, F., Lemaitre, L., Moors, M., van Peteghem, A. P., Wettinck, E. and Weyten, L., Surface and Coatings Technology 34, 311 (1988).10.1016/0257-8972(88)90121-1Google Scholar
4. Hitzig, J., Jüttner, K., Lorentz, W.J. and Paatsch, W., Corros. Sci. 24, 945 (1984).10.1016/0010-938X(84)90115-XGoogle Scholar
5. García Rubio, M., de Lara, M.P., Ocón, P., Diekhoff, S., Benekec, M., Lavía, A. and García, I., Electrochimica Acta 54, 4789 (2009).10.1016/j.electacta.2009.03.083Google Scholar
6. Hoar and Wood, Electrochimica Acta 7, 333 (1962).10.1016/0013-4686(62)87009-1Google Scholar
7. Giovanardi, R., Fontanesi, C. and Dallabarba, W., Electrochimica Acta 56, 3128 (2011).10.1016/j.electacta.2011.01.065Google Scholar
8. Cottis, R. and Turgoose, S., Electrochemical Impedance and Noise (Syrett, B. ed, Corrosion Testing Made Easy Series, NACE, 1999) p.45.Google Scholar
9. Hirschorn, B., Orazem, M., Tribollet, B., Vivier, V., Frateur, I. and Musiani, M., Electrochimica Acta 55, 6218 (2010).10.1016/j.electacta.2009.10.065Google Scholar
10. Linardi, E., Rodriguez, S., Haddad, R. and Lanzani, L., XXXVI Reunion Anual AATN, Ref: CD (T09-147.pdf), Noviembre 2009, Bs. As., Argentina.Google Scholar