Skip to main content Accessibility help
×
Home

Efficacy of Tobramycin Conjugated to Superparamagnetic Iron Oxide Nanoparticles in Treating Cystic Fibrosis Infections

  • Marek Osiński (a1), Yekaterina I. Brandt (a1), Leisha M. Armijo (a1), Michael Kopciuch (a1), Nathan. J. Withers (a1), Nathaniel C. Cook (a1), Natalie L. Adolphi (a2), Gennady A. Smolyakov (a1) and Hugh D. C. Smyth (a3)...

Abstract

Cystic fibrosis (CF) is an inherited childhood-onset life-shortening disease. It is characterized by increased respiratory production, leading to airway obstruction, chronic lung infection and inflammatory reactions. The most common bacteria causing persisting infections in people with CF is Pseudomonas aeruginosa. Superparamagnetic Fe3O4 iron oxide nanoparticles (NPs) conjugated to the antibiotic (tobramycin), guided by a gradient of the magnetic field or subjected to an oscillating magnetic field, show promise in improving the drug delivery across the mucus and P. aeruginosa biofilm to the bacteria. The question remains whether tobramycin needs to be released from the NPs after the penetration of the mucus barrier in order to act upon the pathogenic bacteria. We used a zero-length 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) crosslinking agent to couple tobramycin, via its amine groups, to the carboxyl groups on Fe3O4 NPs capped with citric acid. The therapeutic efficiency of Fe3O4 NPs attached to the drug versus that of the free drug was investigated in P. aeruginosa culture.

Copyright

References

Hide All
1. Gibson, R. L., Burns, J. L., and Ramsey, B. W., “Pathophysiology and management of pulmonary infections in cystic fibrosis”, Am. J. Respir. Crit. Care Med. 168, 918951, 2003.
2. Cystic Fibrosis Foundation, www.cff.org, accessed on July 20, 2013.
3. Welsh, M. J., Ramsey, B. W., Accurso, F., and Cutting, G., “Cystic Fibrosis”, in The Metabolic and Molecular Basis of Inherited Diseases (Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., Eds.), 8th Ed., McGraw-Hill, New York 2001, pp. 51215188.
4. Mense, M., Vergani, P., White, D. M., Altberg, G., Nairn, A. C., and Gadsby, D. C., “ In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer”, The EMBO J. 25, 47284739, 2006.
5. Hodson, M. E. and Geddes, D. M., Cystic Fibrosis, Chapman and Hall Medical, London 1995.
6. Burns, J. L., Ramsey, B. W., and Smith, A. L., “Clinical manifestations and treatment of pulmonary infections in cystic fibrosis”, Adv. Pediatr. Infect. Dis. 8, 5366, 1993.
7. Hoiby, N., “Antibiotic therapy for chronic infection of Pseudomonas in the lung”, Annu. Rev. Med. 44, 110, 1993.
8. Garcia-Contreras, L. and Hickey, A. J., “Aerosol treatment for cystic fibrosis”, Crit. Rev. Ther. Drug Carr. Syst. 20, 317356, 2003.
9. Voynow, J. A. and Rubin, B. K., “Mucins, mucus, and sputum”, Chest 135(2), 505512, Feb. 2009.
10. Rubin, B. K., “Mucus structure and properties in cystic fibrosis”, Paediatric Resp. Rev. 8(1), 47, March 2007.
11. Matsui, H., Grubb, B. R., Tarran, R., Randell, S. H., Gatzy, J. T., Davis, C. W., and Boucher, R. C., “Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airway disease”, Cell 95(7), 10051015, 1998.
12. Boucher, R. C., “New concepts of the pathogenesis of cystic fibrosis lung disease”, Eur. Respir. J. 23, 146158, 2004.
13. Perez-Vilar, J. and Boucher, R. C., “Reevaluating gel-forming mucins’ roles in cystic fibrosis lung diseaseFree Rad. Bio. Med. 37, 15641577, 2004.
14. Emerson, J., Rosenfeld, M., McNamara, S., Ramsey, B., and Gibson, R. L., “ Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis”, Pediatr. Pulmonol. 34, 91100, 2002.
15. Fegan, M., Francis, P., Hayward, A. C., Davis, G. H., and Fuerst, J. A., “Phenotypic conversion of Pseudomonas aeruginosa in cystic fibrosis”, J. Clin. Microbiol. 28, 11431146, 1990.
16. Costerton, J. W., Stewart, P. S., and Greenberg, E. P., “Bacterial biofilms: A common cause of persistent infections”, Science 284, 13181322, 1999.
17. Singh, P. K., L Schaefer, A., Parsek, M. R., Moninger, T. O., Welsh, M. J., and Greenberg, E. P., “Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms”, Nature 407, 762764, 2000.
18. Cabral, D. A., Loh, B. A., and Speert, D. P., “Mucoid Pseudomonas aeruginosa resists nonopsonic phagocytosis by human neutrophils and macrophages”, Pediatr. Res. 22, 429431, 1987.
19. Pier, G. B., Coleman, F., Grout, M., Franklin, M., and Ohman, D. E., “Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis”, Infect. Immun. 69, 18951901, 2001.
20. Anwar, H., Dasgupta, M., Lam, K., and Costerton, J. W., “Tobramycin resistance of mucoid Pseudomonas aeruginosa biofilm grown under iron limitation”, J. Antimicrob. Chemother. 24, 647655, 1989.
21. Hodges, N. A. and Gordon, C. A., “Protection of Pseudomonas aeruginosa against ciprofloxacin and β-lactams by homologous alginate”, Antimicrob. Agents Chemother. 35, 24502452, 1991.
22. Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S., and Greenberg, E. P., “Gene expression in Pseudomonas aeruginosa biofilms”, Nature 413 (6858) 860864, 25 Oct. 2001.
23. Harshey, R. M., “Bacterial motility on a surface: Many ways to a common goal”, Annu. Rev. Microbiol. 57, 249273, 2003.
24. Schweizer, H. P, “Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: Unanswered questions”, Genet. Mol. Res. 2, 4862, 2003.
25. Ratjen, F., Döring, G., and Nikolaizik, W. H., “Effect of inhaled tobramycin on early Pseudomonas aeruginosa colonisation in patients with cystic fibrosis”, Lancet 358, 983984, 2001.
26. Griese, M., Müller, I., and Reinhardt, D., “Eradication of initial Pseudomonas aeruginosa colonization in patients with cystic fibrosis”, Eur. J. Med. Res. 7(2), 7980, 21 Feb. 2002.
27. Qiao, R. R., Yang, C. H., and Gao, M. Y., “Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications”, J. Mater. Chem. 19, 62746293, 2009.
28. Castaneda, R. T., Khurana, A., Khan, R., and Daldrup-Link, H. E., “Labeling stem cells with ferumoxytol, an FDA-approved iron oxide nanoparticle”, J. Vis. Exp. 57, Art. e3482, 4 Nov. 2011.
29. Sahoo, Y., Goodarzi, A., Swihart, M. T., Ohulchanskyy, T. Y., Kaur, N., Furlani, E. P., and Prasad, P. N., “Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control”, J. Phys. Chem. B 109, 38793885, 2005.
30. Iida, H., Takayanagi, K., Nakanishi, T., and Osaka, T., “Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis”, J. Colloid. Interface Sci. 314, 274280, 2007.
31. Armijo, L. M., Brandt, Y. I., Withers, N. J., Plumley, J. B., Cook, N. C., Rivera, A. C., Yadav, S., Smolyakov, G. A., Monson, T., Huber, D. L., Smyth, H. D. C., and Osiński, M., “Multifunctional superparamagnetic nanocrystals for imaging and targeted drug delivery to the lung”, Colloidal Nanocrystals for Biomedical Applications VII (Parak, W. J., Osiński, M., and Yamamoto, K., Eds.), SPIE International Symp. on Biomedical Optics BiOS 2012, San Francisco, CA, 2123 Jan. 2012, Proc. SPIE 8232, Paper 82320M (11 pp.).
32. Herman, D. J., Ferguson, P., Cheong, S., Hermans, I. F., Ruck, B. J., Allan, K. M., Prabakar, S., Spencer, J. L., Lendrum, C. D., and Tilley, R. D., “Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging”, Electr. Suppl. Material (ESI), Chem. Communic. 47, 92219223, 2011.
33. Hermanson, G. T., Bioconjugate Techniques, 2nd Ed, Academic Press 2008, p. 598.
34. Shakil, S., Khan, R., Zarrilli, R., and Khan, A. U., “Aminoglycosides versus bacteria - A description of the action, resistance mechanism, and nosocomial battleground”, J. Biomed. Sci. 15(1), 514, Jan. 2008.
35. Saiman, L., “Microbiology of early CF lung disease”, Paediatr. Respir. Rev. 5 (Suppl A), S367S369, 2004.
36. Le Goffic, F., Capmau, M. L., Tangy, F., and Baillarge, M., “Mechanism of action of aminoglycoside antibiotics. Binding studies of tobramycin and its 6'-n-acetyl derivative to the bacterial ribosome and its subunits”, Eur. J. Biochem. 102, 7381, 1979.
37. Nikaido, H. and Hancock, R. E. W., “Outer membrane permeability of Pseudomonas aeruginosa ”, in The Bacteria: A Treatise on Structure and Function (Sokatch, J. R., Ed.), Academic Press, London 1986, pp. 145193.
38. Nikaido, H., “Nonspecific and specific permeation channels of the Pseudomonas aeruginosa outer membrane”, in Pseudomonas. Molecular Biology and Biotechnology (Galli, E., Silver, S., and Witholt, B., Eds.), Am. Soc. Microbiol., Washington, DC 1992, pp. 146154.
39. Stanier, R. Y., Palleroni, N. J., and Doudoroff, M., “The aerobic pseudomonads: A taxonomic study”, J. Gen. Microbiol. 43(2), 159271, May 1966.
40. Morrow, J. B., Arango, C. P., and Holbrook, R. D., “Association of quantum dot nanoparticles with Pseudomonas aeruginosa biofilm”, J. Environ. Qual. 39, 19341941, 2010.
41. McQuillan, J., Bacterial-Nanoparticle Interactions, Ph.D. Dissertation, Univ. of Exeter, UK, 2010.

Keywords

Efficacy of Tobramycin Conjugated to Superparamagnetic Iron Oxide Nanoparticles in Treating Cystic Fibrosis Infections

  • Marek Osiński (a1), Yekaterina I. Brandt (a1), Leisha M. Armijo (a1), Michael Kopciuch (a1), Nathan. J. Withers (a1), Nathaniel C. Cook (a1), Natalie L. Adolphi (a2), Gennady A. Smolyakov (a1) and Hugh D. C. Smyth (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed