Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T08:10:35.537Z Has data issue: false hasContentIssue false

Effects on Criticality and Burnup Calculations Changings ADS Cladding Material

Published online by Cambridge University Press:  07 March 2016

Carlos E. Velasquez
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha 31270-901 – Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
G. Barros
Affiliation:
CNEN - Comissão Nacional de Energia Nuclear Rua Gal Severiano, n° 90 - Botafogo; 22290-901, Rio de Janeiro - RJ - Brasil
M. A. F. Veloso
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha 31270-901 – Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
A. L. Costa
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha 31270-901 – Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
C. Pereira
Affiliation:
Departamento de Engenharia Nuclear – Escola de Engenharia Universidade Federal de Minas Gerais Avenida Antônio Carlos, 6627, Pampulha 31270-901 – Belo Horizonte, Tel/Fax: 55-31-34096662, MG, Brasil Instituto Nacional de Ciências e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil
Get access

Abstract

One of the most important parts of a hybrid reactor is the cladding because it should withstand high temperatures, neutrons with high energy, high neutron flux, as well as provide the first security contention. Besides, the material should have good mechanical properties to remove the heat. Although, the cladding material choice will have a great influence on criticality calculations. In previous works on ADS there is no cladding used, therefore in this paper it is tested different cladding materials based on SS-316, ODS, T91 and 15-15Ti used in nuclear reactors, to study the variations on the fuel depletion and variations on the neutronic parameters. The results using the cladding are compared with the one obtained without using it. The best material choice is based on the neutronic parameters that presents the closest behavior to the ADS simulated without clad.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atta, C, Lee, J, Heckrotte, W, “The electronuclear conversion of fertile to fissile material”, Tech. Rep. UCRL-52144, Lawrence Livermore Laboratory, Livermore, USA (1976).Google Scholar
Bowman, C et al. , “Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source”, Nuclear Instruments and Methods in Physics Research A 320, 336367 (1992).CrossRefGoogle Scholar
Carminati, F et al. , “An energy amplifier for cleaner and inexhaustible nuclear energy production driven by a particle beam accelerator”, Tech. rep., CERN, Switzerland (1993).Google Scholar
Aït Abderrahim, H., et al. , “Accelerator and Target technology for accelerator driven transmutation and energy production”, FERMILAB-FN-0907-DI, LA-UR-10-06754. DOE sponsored White Paper on Technology for Accelerator Driven Systems, Sep 17. pp. 23.Google Scholar
Vandeplassche, D., Medeiros Romão, L., “Accelerator Driven Systems”, Proceedings of IPAC2012, Applications of Accelerators, Technology Transfer and Insdutrial relations, New Olreans, Louisiana, pp.610, 2012.Google Scholar
Highlights, Barc, “Accelerator Driven System (ADS)”, Reactor Technology & Engineering, http://www.barc.gov.in/publications/eb/golden/reactor/toc/chapter8/8.pdf.Google Scholar
Barros, G.P, Pereira, C., Veloso, M.A.F., Costa, A.L.; Thorium and reprocessed fuel utilization in an accelerator driven system, Annals of Nuclear Energy, Vol. 80, pp. 1420, (2015).CrossRefGoogle Scholar
Miguirditchian, M, Chareyre, L, Sorel, C, Bisel, I, “Development of the ganex process for the reprocessing of gen IV spent nuclear fuels”, Atalante, CEA, Montipellier, 2008, France.Google Scholar
Warin, D, “Future nuclear fuel cycles: prospect and challenges for actinide recycling”, IOP Conf. Series: Materials Science and Engineering 9 (2010)16.Google Scholar
Poston, D. and Trellue, H., “User’s Manual, Version 2.0 for Monteburns Version 1.0.”, LA-UR-99-4999, 1999.Google Scholar
X-5 Monte Carlo Team, MCNP – A General Monte Carlo N-Particle Transport Code , Version 5, Volume II: User’s Guide University of California, Los Alamos National Laboratory. (2003).Google Scholar
Croff, A., “A User's Manual for the Origen2 Computer Code”, ORNL/TM-7175, 1980.Google Scholar
Cota, S and Pereira, C, “Neutronic evaluation of the Non-proliferating reprocessed nuclear fuels in pressurized water reactors”, Ann. Nucl. Energy 24, 829834 (1997).CrossRefGoogle Scholar
Barros, G, “Combustíveis para ADS”, Universidade Federal de Minas Gerais, thesis, (2014).Google Scholar
IAEA, “Structural Materials for Liquid Metal Cooled Fast Reactor Fuel Assemblies – Operational Behaviour”, IAEA Nuclear Energy Series Technical Reports, No. NF-T-4.3, Vienna, (2012).Google Scholar