Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T12:45:00.466Z Has data issue: false hasContentIssue false

Effects of Surface Hydrogenation on Initial Reaction Processes of Transition-Metal Adatoms on Silicon Surfaces

Published online by Cambridge University Press:  17 March 2011

Shin'ichi Higai
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Takahisa Ohno
Affiliation:
National Research Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Get access

Abstract

We studied the effects of the surface hydrogenation on the adsorption, penetration, and silicidation, i.e., the initial reaction processes of the transition-metal Ni and Ti adatoms on the Si surfaces by the first-principles theoretical calculations. We found for both Ni and Ti that the surface hydrogenation changes the most stable surface site and reduces the adsorption energy. In addition, it blocks the penetration, and thus prevents the silicidation. Furthermore, we newly propose its interesting effects from our results, i.e., impurity metal atoms existing in the Si subsurface are extracted onto the surface by the surface hydrogenation. Thereby, highly pure and atomically flat Si surfaces are expected to be obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yoshimura, M., Ono, I., and Ueda, K., Appl. Surf. Sci. A 130, 276 (1998).Google Scholar
2.Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
3.Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
4.Perdew, J. P., Electronic Structure of Solids, eds. Ziesche, P. and Eschrig, H., (Akademie Verlag, Berlin, 1991).Google Scholar
5.Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).Google Scholar
6.Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
7.Louie, S. G., Froyen, S., and Cohen, M. L., Phys. Rev. B 26, 1738 (1982).Google Scholar
8.Tateyama, Y., Ogitsu, T., Kusakabe, K., and Tsuneyuki, S., Phys. Rev. B 54, 14994 (1996).Google Scholar
9.Yu, B. D., Miyamoto, Y., Sugino, O., Sasaki, T., and Ohno, T., Phys. Rev. B 58, 5349 (1998).Google Scholar
10.Higai, S. and Ohno, T., Japan Patent No. 50265 (pending).Google Scholar
11.Niehus, H., Köhler, U. K., Copel, M., and Demuth, J. E., J. Microscopy 152, 735 (1988).Google Scholar
12.Higai, S. and Ohno, T., Phys. Rev. B 62, R7711 (2000).Google Scholar
13.Matsuura, S., Hitosugi, T., Heike, S., Kida, A., Suwa, Y. Watanabe, S., Kitazawa, K., and Hashizume, T., Trans. Mater. Res. Soc. Jpn. 25, 841 (2000).Google Scholar
14.Matsuura, S., Hitosugi, T., Heike, S., Kida, A., Suwa, Y., Onogi, T., Watanabe, S., Kitazawa, K., and Hashizume, T., Jpn. J. Appl. Phys. 39, 4518 (2000).Google Scholar