Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T04:23:39.011Z Has data issue: false hasContentIssue false

Effects of Surface and Interlayer Processing Conditions on Selected Ohmic Contact Metallizations for p-type Silicon Carbide

Published online by Cambridge University Press:  21 March 2011

L. M. Porter
Affiliation:
Dept. of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
T. Jang
Affiliation:
Dept. of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
T. Worren
Affiliation:
Dept. of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
K. C. Chang
Affiliation:
Dept. of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
N. A. Papanicolaou
Affiliation:
Naval Research Laboratory, 7565 Overlook Avenue, Washington, D.C. 20375.
J. W. Erickson
Affiliation:
Accurel Systems, 350 Potrero Avenue, Sunnyvale, CA 94086.
Get access

Abstract

A comparative study of Pt and Pt/Si contacts to p-type 6H-SiC in terms of various processing conditions and interlayer specifications was performed. Deposition temperature, the thickness of the Si layer, and B-dopant incorporation in the Si were found to significantly affect the specific contact resistivity (SCR) values. In addition, pre-etching of the SiC surface in SF6 + Ar was found to consistently reduce the SCR's. The lowest average SCR values were 3 × 10−5 Ωcm2 for Pt/Si/SiC contacts deposited on pre-etched SiC surfaces (7.0 × 1018 cm−3 doping concentration) and annealed at 1100 °C for 5 min.

Aluminum-titanium contacts also showed dependence on the thicknesses of the Al and Ti layers and on the locations of the layers. Differences in both the SCRs and surface morphology are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Porter, L.M. and Davis, R.F., Mater. Sci. Eng. B, 34, 83 (1995).Google Scholar
2. Crofton, J., Barnes, P.A., Williams, J.R. and Edmond, J.A., Appl. Phys. Lett., 62, 384 (1993).Google Scholar
3. Crofton, J., Beyer, L., Williams, J.R., Luckowski, E.D., Mohney, S.E. and DeLucca, J.M., Solid-State Electron., 41, 1725 (1997).Google Scholar
4. Nennewitz, O., Spiess, L. and Breternitz, V., Appl. Surf. Sci., 91, 347 (1995).Google Scholar
5. Spieß, L., Nennewitz, O. and Pezoldt, J.. Improved ohmic contacts to p-type 6H-SiC. In Silicon Carbide and Related Materials. Kyoto, Japan: (Institute of Physics Publishing, 1995) p. 585.Google Scholar
6. Vassilevski, K.V., Constantinidis, G., Papanicolaou, N.A., Martin, N. and Zekentes, K., Mater. Sci. Eng. B, 61–62, 296 (1999).Google Scholar
7. Vassilevski, K.V., Rendakova, S.V., Nikitina, I.P., Babanin, A.I., Andreev, A.N. and Zekentes, K., Semiconductors, 33, 1206 (1999).Google Scholar
8. Lundberg, N. and Östling, M., Solid-State Electron., 39, 1559 (1996).Google Scholar
9. Papanicolaou, N.A., Edwards, A., Rao, M.V. and Anderson, W.T., Appl. Phys. Lett., 73, 2009 (1998).Google Scholar
10. Olowolafe, J.O., Liu, J. and Gregory, R.B., J. Electron. Mater., 29, 391 (2000).Google Scholar
11. Chen, J.S., Bachli, A., Nicolet, M.-A., Baud, L., Jaussaud, C. and Madar, R., Mater. Sci. Eng., 29, 185 (1995).Google Scholar
12. Glass, R.C., Palmour, J.W., Davis, R.F. and Porter, L.M., U.S. Patent No. 5,323,022 (1994).Google Scholar
13. Porter, L.M., Bow, J.S., Kim, M.J., Carpenter, R.W. and Davis, R.F., J. Mater. Res., 10, 2336 (1995).Google Scholar