Skip to main content Accessibility help
×
Home

Effects of Sulfur Concentration on the Electron Field Emission Properties of Nanocrystalline Carbon Thin Films

  • S. Gupta (a1), B. R. Weiner (a2), B. L. Weiss (a1) and G. Morell (a3)

Abstract

The electron field emission properties of sulfur-assisted nanocrystalline carbon (n-C: S) thin films grown on molybdenum substrates by hot-filament CVD technique using methane-hydrogen (CH4/H2) and hydrogen sulfide-hydrogen (H2S/H2) gas mixtures were investigated. The field emission properties of the S-assisted films are reported as a function of sulfur concentration. The incorporation of S caused structural and microstructural changes that were characterized with SEM, AFM and Raman spectroscopy (RS). The S-assisted films show smoother surfaces and smaller grains than those grown without. The lowest turn-on field measured was around 4.5 – 5.0 V/μm films grown with 500 ppm of hydrogen sulfide and at 900 °C. The electron field emission properties of S-assisted films were also compared to those grown without sulfur (i.e., intrinsic). An inverse correlation between the threshold field (Ec) and sulfur concentration was found. These finding are attributed to defect induced states within the electronic band structure.

Copyright

References

Hide All
1. Spindt, C. A., Brodie, I., Humphrey, L. and Westerberg, E. R., J. Appl. Phys. 47, 5248 (1976).
2. Castellano, J. A., in Handbook of Display Technology (Academic Press, New York, 1992).
3. Jaskie, J. E., Mater. Res. Bull. 21, 59 (1996).
4. Robertson, J., Mater. Res. Soc. Symp. Proc. 509, 83 (1998) and references therein.
5. Hart, A., Satyanarayana, B. S., Milne, W. I. and Robertson, J., Diamond and Related Materials 8, 809 (1999).
6. Karabutov, A. V., Konov, V. I., Pimenov, S. M., Obraztsova, E. D., Frolov, V. D., Pereverzev, V. G. and Smolin, A. A., J. Wide Bandgap Materials 7, 68 (1999).
7. Himpsel, F. J., Knapp, J. A., Van Vechten, J. A. and Eastman, D. E., Phys. Rev. B 20, 624627 (1979);
Van der Weide, J. and Nemanich, R. J., Appl. Phys. Lett. 62, 1878 (1993).
8. Shin, J. Y., Baik, H. K. and Song, K. M., J. Appl. Phys. 87, 7508 (2000).
9. Amartunga, G. A. J., Silva, S. R. P., Appl. Phys. Lett. 68, 2529 (1996);
Geis, M. W., Efremow, N.N., Woodhouse, J.D., and McAleese, M.D., IEEE Trans. ED Lett. 12, 456 (1991).
10. Okano, K., Koizumi, S., Silva, S. R. P., and Amartunga, G. A. J., Nature, 381, 140 (1996).
11. Wang, C., Garcia, A., Ingran, D. C., Lake, M. and Kordesch, M. E., Electronics Lett. 27, 1459 (1991).
12. Tallin, A. A., Pan, L. S., McCarty, K. F., Felter, T. E., Doerr, H. J., Bunshah, R. F., Appl. Phys. Lett. 69, 3842 (1996).
13. Coll, B. F., Jaskie, J. E., Markahm, J. L., Menu, E. P., Talin, A. A., VonAllmen, P., Mater. Res. Soc. Symp. Proc. 498, xx (1998).
14. Shiao, J., Zorman, C. A. and Hoffman, R. W., Mater. Res. Soc. Symp. Proc. 349, 465 (1994).
15. Kalish, R., Reznik, A., Uzan-Saguy, C. and Cytermann, C., Appl. Phys. Lett. 76, 757 (2000) and references therein.
16. Dandy, D. S., Thin Solid Films 381, 1 (2001).
17. Gamo, M. N., Xiao, C., Zhang, Y., Yasu, E., Kikucji, Y., Sakaguchi, I., Suzuki, T., Sato, Y. and Ando, T., Thin Solid Films 382, 113 (2001).
18. Gupta, S., Weiner, B. R. and Morell, G., Diamond and Related Materials 2001 (in Press);
Gupta, S., Weiss, B. L., Weiner, B. R. and Morell, G., Mater. Res. Soc. Symp. Proc. xx (2001) (to be published).
19. Groning, O., Kuttel, O. M., Groning, P., and Schlapbach, L., J. Vac. Sci. Technol. B 17, 1970 (1999) and references therein.
20. Weiss, B. L., Badzian, A., Pilione, L., Badzian, T. and Drawl, W., J. Vac. Sci. Technol. B 16, 681 (1998).
21. Nemanich, R. J., Glass, J. T., Luckovsky, G., and Sroder, R. E., J. Vac. Sci. Technol. A 6, 1783 (1988).
22. Ferrari, A. C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).
23. Bhattacharyya, S., Walzer, K., Hietschold, H. and Richter, F., J. Appl. Phys. 89, 1619 (2001).
24. Shiao, J., Zorman, C. A. and Hoffman, R. W., Mater. Res. Soc. Symp. Proc. 349, 465 (1994).
25. Haubner, R., Bohr, S. and Lux, B., Diamond and Related Materials 8, 171 (2000).
26. Shin, I. H. and Lee, T. D., J. Vac. Sci. Technol. B 18, 1027 (2000).
27. Zhu, W., Kochanski, G. P. and Jin, S., Mater. Res. Soc. Symp. Proc. 509, 5358 (1998);
Zhu, W., Kochanski, G. P., Jin, S. and Seibles, L., J. Vac. Sci. Technol. B 14, 2011 (1996).
28. Xu, N. S., Chen, J. and Deng, S. Z., Appl. Phys. Lett. 76, 2463 (2000).
29. Pananakis, G., Ghibando, G., Kies, R. and Papadas, C., J. Appl. Phys. 78, 2635 (1995).

Effects of Sulfur Concentration on the Electron Field Emission Properties of Nanocrystalline Carbon Thin Films

  • S. Gupta (a1), B. R. Weiner (a2), B. L. Weiss (a1) and G. Morell (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed