Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T02:20:41.971Z Has data issue: false hasContentIssue false

Effects of Substrate Orientation on the Valence Band Splittings and Valence Band Offsets in GaN and AlN Films

Published online by Cambridge University Press:  10 February 2011

J. A. Majewski
Affiliation:
Walter Schottky Institute, Technical University of Munich, D-85748 Garching, Germany
M. Städele
Affiliation:
Walter Schottky Institute, Technical University of Munich, D-85748 Garching, Germany
Get access

Abstract

We present a first-principles study of heteroepitaxial interfaces between GaN and both cubic as well as wurtzite AlN substrates oriented along main cubic or hexagonal directions and of stacking fault interfaces between cubic and wurtzite GaN. Our calculations show that all studied heterostructures are of type I. Valence band offsets for GaN/AlN are nearly independent of the substrate orientation and of the order of 0.8 eV. The valence and conduction band offsets for a stacking fault interface are predicted to be 40 meV and 175 meV, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode, Springer, Berlin, 1997.Google Scholar
2. Martin, G., Botchkarev, A., Rockett, A., and Morkoq, H., Appl. Phys. Lett. 68, 2541 (1996).Google Scholar
3. Martin, G., Strite, S., Botchkarev, A., Agarwal, A., Rockett, A., Morkoq, H., Lambrecht, W. R. L., and Segall, B., Appl. Phys. Lett. 65, 610 (1994).Google Scholar
4. Waldrop, J. R. and Grant, R. W., Appl. Phys. Lett. 68, 2879 (1996).Google Scholar
5. Rizzi, Angela, private communication.Google Scholar
6. Wei, Su-Huai and Zunger, Alex, Appl. Phys. Lett. 69, 2719 (1996).Google Scholar
7. Nardelli, M. Buongiorno, Rapcewicz, K., and Bernholc, J., Phys. Rev. B55, R7323 (1997).Google Scholar
8. Bernardini, F., Fiorentini, V., and Vanderbilt, D., Mat. Res. Soc. Symp. Proc. 449, 923 (1997).Google Scholar
9. Pickett, W. E., Computer Physics Reports 9, 115 (1989).Google Scholar
10. Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991); L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
11. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
12. Louie, S. G., Froyen, S., and Cohen, M. L., Phys. Rev. B 26, 1738 (1982).Google Scholar
13. Sthdele, M., Majewski, J. A., and Vogl, P., Phys. Rev. B 56, 6911 (1997).Google Scholar
14. Baldereschi, A., Baroni, S., and Resta, R., Phys. Rev. Lett. 61, 734 (1988).Google Scholar
15. Albanesi, E. A., Lambrecht, W. R. L., and Segall, B., J. Vac. Sci.Technol. B 12, 2470 (1994).Google Scholar
16. Majewski, J. A., Sthdele, M., and Vogl, P., Mat. Res. Soc. Symp. Proc. 449, 917 (1997).Google Scholar