Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-03T08:07:05.918Z Has data issue: false hasContentIssue false

The Effects of Substrate Conditions on the Microstructural Evolution of Thin Diamond-Like Films

Published online by Cambridge University Press:  25 February 2011

J. J. Cuomo
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, N.Y. 10598
J. Bruley
Affiliation:
Now at Max-Planck-Institut für Metallforschung, Seestraße 92, 7000 Stuttgart 1, F.R. Germany
J. P. Doyle
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, N.Y. 10598
D. L. Pappas
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, N.Y. 10598
K. L. Saenger
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, N.Y. 10598
J. C. Liu
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, N.Y. 10598
P. E. Batson
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, N.Y. 10598
Get access

Abstract

We report on a study of hard amorphous carbon thin films prepared by condensing streams of energetic carbon species, onto a range of substrates maintained at different temperatures. The carbon vapor is generated either by ion sputtering, laser ablation or e-beam evaporation. Spatially resolved electron-energy-loss spectra reveal variations in the films′ microstructure brought about by altering the deposition conditions. We estimate that the density of the different films varies between 2.0 and 3.26 g/cm3. We observe an evolution towards denser films upon increasing incident beam energy, reducing substrate temperature, and increasing substrate thermal conductivity. Low density films contain a predominance of trigonally bonded sp2-hybridized carbon (i.e graphitic carbon) and the highest density films contain a high fraction (∽ 80%) of tetr-ahedral sp3-bonded carbon (i.e. diamond-like).

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Angus, J.C and Jansen, F., J. Vac Sci. and Tech. A6 1778 (1988)Google Scholar
2 Angus, J.C. and Haymen, C.C., Science 241 913 (1988)Google Scholar
3 Tsai, H. and Bogy, D.B., J. Vac. Sci. Technol. A5, 3287 (1987)Google Scholar
4 Messier, R, Badzian, A.R., Badzian, T., Spear, K.E., Bachman, P., and Roy, R., Thin Solid Films, 153, 1 (1987)Google Scholar
5 Robertson, J., Advances in Physics, 35, 317 (1986)Google Scholar
6 Bruley, J., Madakson, P.B., Liu, J.C., Nuc. Instrum. and Meth. in Phys., B45, 618 (1990)Google Scholar
7 Gao, C., Wang, Y.Y., Ritter, A.L. and Dennison, J.R., Phys Rev. Letts., 62, 945 (1989)Google Scholar
8 Comelli, G., Stohr, J., Robinson, C.J., and Jark, W., Phys. Rev. B38, 7511, (1988)Google Scholar
9 Cuomo, J.J., Doyle, J. P, Bruley, J., Liu, J.C, Carbon 28 761 (1990); Appl Phys Letts 58 1 (1991)Google Scholar
10 A review is given by Colliex, C. in Advances in Optical and Electron Microscopy, Edited by Barer, R. and Cosslet, V.E. (Academic Press, New York), Vol. 9, 65 (1984)Google Scholar
11 Pappas, D.L., Saenger, K.L., Cuomo, J.J., In preparationGoogle Scholar
12 Batson, P.E., Rev. Sci. Inst. 57, 43 (1986)Google Scholar
13 Weng, X., Rez, P., and Ma, H., Phys Rev B40, 4175, (1989)Google Scholar
14 Mele, E. and Ritsko, J.J., Phys Rev Lett. 43, 68 (1979)Google Scholar
15 Kitamura, M., Sugiura, C, and Muramatsu, S., Solid State Commun. 62 663 (1987)Google Scholar
16 Robertson, J., Phil. Mag. Letts. 57, 143 (1988)Google Scholar
17 Tamor, M.A. and Wu, C.H., J. Appl. Phys. 67, 1007 (1990)Google Scholar
18 Lifshitz, Y., Kasi, S.R., and Rablais, J.W., Phys Rev Lett. 62, 1260 (1989)Google Scholar
19 Kasi, S.R., Kang, H., and Rabalais, J.W., J. Chem. Phys., 88, 5914 (1988)Google Scholar
20 Myazawa, T., Misawa, S., Yoshida, S., and Gonda, S., J. Appl. Phys. 55, 188 (1984)Google Scholar
21 Aisenberg, S. and Chabot, R.., J. Appl. Phys. 42, 2953, (1971)Google Scholar
22 Martin, P.J., Filipckuk, S.W., Netterfield, R.P., Field, S.J., Whitnall, D.F., and McKenzie, D.R., Mater. Sci. Letts., 7, 410 (1988)Google Scholar