Skip to main content Accessibility help
×
Home

Effects of Silicon Doping and Threading Dislocation Density on Stress Evolution in AlGaN Films

  • Joan M. Redwing (a1) (a2), Ian C. Manning (a1), Xiaojun Weng (a2), Sarah M. Eichfeld (a3), Jeremy D. Acord (a3), Mark A. Fanton (a3) and David W. Snyder (a3)...

Abstract

In-situ wafer curvature measurements were used to study the effect of Si doping on intrinsic growth stress during the metalorganic chemical vapor deposition (MOCVD) growth of AlxGa1-xN (x=0-0.62) layers on SiC substrates. Post-growth transmission electron microscopy (TEM) characterization was used to correlate measured changes in stress with changes in film microstructure. Si doping was found to result in the inclination of edge-type threading dislocations (TDs) in AlxGa1-xN which resulted in a relaxation of compressive stress and generation of tensile stress. The experimentally measured stress gradient was similar to that predicted by an effective climb model. Dislocation inclination resulted in a reduction in the TD density for Si-doped layers compared to undoped AlxGa1-xN likely due to increased opportunities for dislocation interaction and annihilation. The TD density, which increased with increasing Al-fraction, was found to significantly alter the stress gradients in the films. Film stress was also observed to play a role in TD inclination. In undoped AlxGa1-xN, TD inclination was observed only when the film grew under a compressive stress while in Si-doped AlxGa1-xN, TD inclination was observed independent of the sign or magnitude of the film stress. Si dopants are believed to alter the concentration of surface vacancies which gives rise to dislocation jog via a surface-mediated climb mechanism.

Copyright

References

Hide All
1. Monemar, B. and Pozina, G., Prog. Quantum Electron. 24, 239 (2000).
2. Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V., Mil’vidskii, M.G., Redwing, J.M., Shin, M., Skowronski, M., Greve, D.W. and Wilson, R.G., Solid State Electron. 42, 627 (1998).
3. Terao, S., Iwaya, M., Nakamura, R., Kamiyama, S., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. Part 2, 40, L195 (2001).
4. Zhang, J.P., Wang, H.M., Gaevski, M.E., Chen, C.Q., Fareed, Q., Yang, J.W., Simin, G. and Khan, M.A., Appl. Phys. Lett. 80, 3542 (2002).
5. Nix, W.D. and Clemens, B.M., J. Mater. Res. 14, 3467 (1999).
6. Romanov, A.E. and Speck, J.S., Appl. Phys. Lett. 83, 674 (2003).
7. Stoney, G. G., Proc. R. Society of London 82, 172175 (1909).
8. Wang, J.F., Yao, D.Z., Chen, J., Zhu, J.J., Zhao, D.G., Jiang, D.S., Yang, H. and Liang, J.W., Appl. Phys. Lett. 89, 152105 (2006).
9. Acord, J.D., Manning, I.C., Weng, X.J., Snyder, D.W. and Redwing, J.M., Appl. Phys. Lett. 93, 111910 (2008).
10. Cantu, P., Wu, F., Waltereit, P., Keller, S., Romanov, A. E., Mishra, U. K., DenBaars, S. P., and Speck, J. S., Appl. Phys. Lett. 83, 674 (2003).
11. Hull, D. and Bacon, D.J., Introduction to Dislocations, 4th ed. (Butterworth Heinemann, New York, 2002).
12. Follstaedt, D.M., Lee, S.R., Allerman, A.A. and Floro, J.A., J. Appl. Phys. 105, 083507 (2009).
13. Manning, I.C., Weng, X., Acord, J.D., Fanton, M.A., Snyder, D.W. and Redwing, J.M., J. Appl. Phys. 106, 023506 (2009).
14. Manning, I.C., Weng, X., Fanton, M.A., Snyder, D.W. and Redwing, J.M., J. Crystal Growth 312, 1301 (2010).
15. Follstaedt, D.M., Lee, S.R., Provencio, P.P., Allerman, A.A., Floro, J.A. and Crawford, M.H., Appl. Phys. Lett. 87, 121112 (2005).
16. Dadgar, A., Veit, P., Schulze, F., Blasing, J., Krtschil, A., Witte, H., Diez, A., Hempel, T., Christen, J., Clos, R. and Krost, A., Thin Solid Films 515, 4356 (2007).
17. Dadgar, A., Blasing, J., Diez, A. and Krost, A., Appl. Phys. Express. 4, 011001 (2011).
18. Xie, J.Q., Mita, S., Hussey, L., Rice, A., Tweedie, J., LeBeau, J., Collazo, R. and Sitar, Z., Appl. Phys. Lett. 99, 141916 (2011).
19. Xie, J.Q., Seiji, M., Ricke, A., Tweedie, J., Hussey, L., Collazo, R. and Sitar, Z., Appl. Phys. Lett. 98, 202101 (2011)
20. Wright, A.F. and Grossner, U., Appl. Phys. Lett. 73, 2751 (1998).

Keywords

Effects of Silicon Doping and Threading Dislocation Density on Stress Evolution in AlGaN Films

  • Joan M. Redwing (a1) (a2), Ian C. Manning (a1), Xiaojun Weng (a2), Sarah M. Eichfeld (a3), Jeremy D. Acord (a3), Mark A. Fanton (a3) and David W. Snyder (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed