Skip to main content Accessibility help
×
Home

The Effects of Silicic Acid, Aluminate Ion Activity And Hydrosilicate Gel Development on the Dissolution Rate of a Simulated British Magnox Waste Glass

  • P. K. Abraitis (a1), B. P. McGrail (a2) and D. P. Trivedi (a3)

Abstract

The dissolution rate of a simulated Magnox waste glass has been investigated in single-pass flow-through experiments designed to investigate the role of Al and Si in the dissolution process. The results indicate that both Al and Si species suppress the rate of dissolution. These effects may be modelled using a combined Al/Si affinity term in a conventional glass dissolution rate law. Aluminium species may also play an inhibitory role when present at relatively high solution activities. In Si-rich alkaline media, the concentration of aluminium is controlled to very low levels by the development of secondary aluminosilicate phases. Removal of Al by secondary phase precipitation results in dissolved Al activities below that required to reach ‘saturation’ with respect to the glass.

Copyright

References

Hide All
[1] Lasaga, A. C. in Kinetics of Geochemical Processes ed. Lasaga, A. C. and Kirkpatrick, R. J., Reviews in Mineralogy 8, chapter 4, p. 135169 (1981).
[2] Aagaard, P. and Helgeson, H. C., Am. J. Sci. 282 (1982) p. 237285.
[3] Lasaga, A. C. in Chemical Weathering Rates of Silicate Minerals, eds. White, A. F. and Brantley, S. L., Reviews in Mineralogy 31, chapter 2, p. 2381 (1995).
[4] Grambow, B., Mat. Res. Symp. Proc. Vol.44 (1985), p. 209216.
[5] Bourcier, W. L., Peiffer, D. W., Knauss, K. G., McKeegan, K. D. and Smith, D. K., Mat. Res. Symp. Proc. Vol.176 (1990), p. 209–216.
[6] Gin, S., Mat. Res. Symp. Proc. Vol.412 (1996), p. 189196.
[7] Daux, V., Guy, C., Advocat, T., Crovisier, J. L. and Stille, P., Chemical Geology Vol.142 (1997) p. 109126.
[8] Advocat, T., Chouchan, J. L., Crovisier, J. L., Guy, C., Daux, V., Jegou, C., Gin, S. and Vernaz, E., Mat. Res. Symp. Proc. Vol.412 (1998), p. 6370.
[9] McGrail, B. P., Ebert, W. L., Bakel, A. J. and Peeler, D. K., Journal of Nuclear Materials, Vol.249 (1997), p. 175189.
[10] ASTM, Standard Test Methods for Determining the Chemical Durability of Nuclear Waste Glasses: The Product Consistency Test (PCT), ASTM C 1285-94, Annual Book of ASTM standards, Philadelphia, PA (1994).
[11] Parkhurst, D. L., U. S. Geological Survey, Water-Resources Investigations Report 95-4227 (1995).
[12] Abraitis, P. K., Vaughan, D. J., Livens, F. R., Monteith, J., Tnivedi, D. P. and Small, J. S., Mat. Res. Symp. Proc. Vol.412 (1998), p. 4754.
[13] Smith, B. F. L. in Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. ed. Wilson, M. J., chapter 9, p. 331-357(1994).
[14] Iseghem, P. Van, Amaya, T., Suzuki, Y. and Yamamoto, H., Journal of Nuclear Materials, Vol.190 (1992), p. 269276.

The Effects of Silicic Acid, Aluminate Ion Activity And Hydrosilicate Gel Development on the Dissolution Rate of a Simulated British Magnox Waste Glass

  • P. K. Abraitis (a1), B. P. McGrail (a2) and D. P. Trivedi (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed