Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-23T19:28:40.606Z Has data issue: false hasContentIssue false

Effects of Nitrogen Ion Energy on the Growth Mode of WN Films Deposited by Reactive Ion Beam Sputtering

Published online by Cambridge University Press:  25 February 2011

A.H. Benhocine
Affiliation:
Institut d'Electronique Fondamentale d'Orsay. U.R.A. D0022 CNRS.Université Paris XI- Brit.220 - 91405 ORSAY CEDEX, France
F. Meyer
Affiliation:
Institut d'Electronique Fondamentale d'Orsay. U.R.A. D0022 CNRS.Université Paris XI- Brit.220 - 91405 ORSAY CEDEX, France
M. Eizenberg
Affiliation:
Institut d'Electronique Fondamentale d'Orsay. U.R.A. D0022 CNRS.Université Paris XI- Brit.220 - 91405 ORSAY CEDEX, France
D. Bouchier
Affiliation:
Institut d'Electronique Fondamentale d'Orsay. U.R.A. D0022 CNRS.Université Paris XI- Brit.220 - 91405 ORSAY CEDEX, France
S. Kianfar
Affiliation:
Institut d'Electronique Fondamentale d'Orsay. U.R.A. D0022 CNRS.Université Paris XI- Brit.220 - 91405 ORSAY CEDEX, France
Get access

Abstract

WN films were deposited on clean Si substrates by Reactive Ion Beam Sputtering in a UHV system. The growth mode of the films as a function of the nitrogen ion energy was investigated by in situ Auger Electron Spectrometry. The energy of the incident ions was varied from 250 eV to 3 keV. We observed a significant nitridation of the silicon at the very beginning of the deposition. This nitridation is more pronounced for the lower energy and is more reduced for 2 keV-ions. It seems to follow the trend of the film composition: 250 eV-ions and 2 keV-ions result in N-rich films (N/W≈1) and W-rich films (N/W≈0.5), respectively. All these results are discussed in terms of sputtering yield, backscattering and sticking coefficient and are explained by taking into account: first, the interaction between the incident ions and the target, and second, the interaction between the species emitted by the target and the growing film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 So, F.C.T., Kolawa, E., Zhao, X.I., and Nicolet, M.A., Thin Solid Films, 153. 507 (1987).Google Scholar
2 Huber, K.J. and Aita, C.R., J. Vac. Sci. Technol. A6. 1717(1988).Google Scholar
3 Shih, K.K. and Dove, D.B., J. Vac. Sci. Technol. A8. 1359 (1990).Google Scholar
4 Kattelus, H.P., Kolawa, E., Affolter, K., and Nicolet, M.A., J. Vac. Sci. Technol. A3, 2246 (1985).Google Scholar
5 Bosseboeuf, A., Fourrier, A., Meyer, F., Benhocine, A., and Gautherin, G., Appl. Surf. Sci. 53. 353 (1991).Google Scholar
6 Winters, H.F. and Kay, E., J. Appl. Phys. 43. 794 (1972).Google Scholar
7 Andersen, H.H. and Bay, H.L. in: Sputtering by Particle Bombardments, Ed. Behrisch, I.R. (Springer, Berlin 1981), p145.Google Scholar
8 Bouchier, D., Gautherin, G., Schwebel, C., Bossebceuf, A., Agius, B., and Rigo, S., J. Electrochem. Soc. 130, 638 (1983).Google Scholar
9 Meyer, F., Bouchier, D., Stambouli, V., Pellet, C., Schwebel, C., and Gautherin, G., Appl. Surf. Sci. 38, 286 (1989).Google Scholar
10 Winters, H.W. and Horne, D.E., Surf. Sci. 24 587 (1971).Google Scholar
11 Eckstein, W. and Biersack, J.P., Z. Phys. B Condensed Matter 63 471 (1986).Google Scholar
12 Lee, J., Madix, R.J., Schaegel, J.E. and Auerbach, D.J., Surf.Sci. 143 626 (1984).CrossRefGoogle Scholar