Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-21T08:17:58.122Z Has data issue: false hasContentIssue false

The Effects of Na2O, Al2O3, and 3203 ON HfO2 Solubility in Borosilicate Glass

Published online by Cambridge University Press:  10 February 2011

L. L. Davis
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA 99352;
L. Li
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA 99352;
G. Darab
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA 99352;
H. Li
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA 99352;
D. Strachan
Affiliation:
Pacific Northwest National Laboratory, Box 999, Richland, WA 99352;
P. G. Allen
Affiliation:
MS 70A-1 150, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J. J. Bucher
Affiliation:
MS 70A-1 150, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
I. M. Craig
Affiliation:
MS 70A-1 150, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
N. M. Edelstein
Affiliation:
MS 70A-1 150, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
D. K. Shuh
Affiliation:
MS 70A-1 150, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

A single borosilicate glass composition has previously been shown to dissolve 10 and 25 mass% PuO2 under oxidizing and reducing conditions, respectively. A simplified version of this glass has been thoroughly investigated to determine the effect of increasing the alkali:aluminum ratio on the HfO2 solubility in borosilicate glasses. We are investigating HfO2 solubility because specific Pu wastes are being considered for disposal in glass, and Hf(IV) serves as a structural surrogate for Pu(IV) and as a neutron absorber in glass. Three series of base glasses were produced using the same initial composition, but varying the oxides B2O3, Al2O3, or Na2O one at a time. In a fourth series of the same initial composition, both Na2O and A12O3 were varied. Hafnia was added to these glasses and the mixture equilibrated for 2 hours: 1 hour at 1450°C after 1 hour at 1560°C. A wide range of HfO2 additions were made to the base glasses, and the solubility of HfO2 determined to within ±1 mass%. The highest solubility determined was 14 mol% (35 mass%) HfO2 in a low-Al glass. We conclude that increasing Na2O/Al2O3 increases the HfO2 solubility, and increasing the B2O3 content apparently has little effect on HfO2 solubility in the borosilicate glasses studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, L., Strachan, D. M., Davis, L. L., Li, H., Feng, X., Qian, M., Darab, J. G., and Vienna, J. D., Mat. Res. Soc. Symp. Proc. this volume (1998).Google Scholar
2. Watson, E. B., Contrib. Mineral. Petrol. 70, 407419 (1979).Google Scholar
3. Gwinn, R. and Hess, P. C., Contrib. to Min. Petrol., 101 326–338 (1989)Google Scholar
4. Bates, J. K., Ellison, A. J. G., Emery, J. W., and Hoh, J. C., Mat. Res. Soc. Symp. Proc., 412, 5765 (1996).Google Scholar
5. Skulski, T., and Watson, E. B., «abst», Eos, Transactions, American Geophysical Union, 73, 342 (1992).Google Scholar
6. Darab, J. G., Li, H., Schweiger, M. J., and others, Plutonium Futures - The Science Conference Transactions, LA-13338-C, Los Alamos National Laboratory, Los Alamos, New Mexico, p. 143145. (1997).Google Scholar
7. Li, H. (private communication).Google Scholar
8. Feng, X., Li, H., Davis, L. L., Darab, J. G., Schweiger, M. J., Vienna, J. D., Bunker, B. C., Shuh, D., Ewing, R. C., Vance, E. R., Ceramic Transactions, (in press).Google Scholar
9. Allen, P. G., Siemering, G. S., Shuh, D. K., Bucher, J. J., Edelstein, N. M., Langton, C. A., Clark, S. B., Reich, T., and Denecke, M. A., Radiochimica Acta, 76, 7786 (1997).Google Scholar
10. Darab, J. G., Feng, X., Linehan, J. C., Smith, P. A., and Roth, I., in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries I1, Jam, V. and Peeler, D., eds., American Ceramic Society, Westerville, OH, pp. 103110 (1996).Google Scholar
11. Taylor, P., A review of phase separation in borosilicate glasses, with reference to nuclear fuel waste immobilization AECL-10173, Whiteshell Nuclear Research Establishment, Pinawa, Manitoba. (1990).Google Scholar
12. Peeler, D. K. et al., “Am/Cm Glass Formulation: A study of Liquidus Temperature and Viscosity,” U. S. DOE Report WSRC-TR-97-0081, Westinghouse Savannah River Company, Aiken, SC (1997).Google Scholar
13. Myers, B. R., Armantrout, G. A., Jantzen, C. M., Jostons, A., McKibben, J. M., Shaw, H. F., Strachan, D. M., and Vienna, J. D., Technical Evaluation Panel Summary Report: Ceramic and Glass Immobilization Options, Lawrence Livermore National Laboratory UCRL-ID-129315, p. 512–519 (1998).Google Scholar
14. Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, 4thed. (John Wiley & Sons, Inc., New York, 1980), pp. 824831.Google Scholar
15. Goldman, D. S., Physics and Chemistry of Glasses, 27, 128133 (1986).Google Scholar
16. Smets, B. M. J. and Lommen, T. P. A., Physics and Chemistry of Glasses, 22, 158162 (1981).Google Scholar
17. Jen, J. S. and Kalinowski, M. R., J. Non-Crystalline Solids, 38&39, 2126 (1989).Google Scholar
18. Dickinson, J. E. Jr. and Hess, P. C., Geochim. Cosmochim. Acta, 49, 22892296 (1985).Google Scholar
19. Dickenson, M. P. and Hess, P. C., Contrib. to Min. and Petrol., 92, 207217 (1986).Google Scholar
20. Hess, P. C., Canadian Mineralogist, 15, 162178(1977).Google Scholar
21. Shannon, R. D. and Prewitt, C. T., Acta Crystallog., B25, 925–946 (1969).Google Scholar
22. Klein, C. and Hurlbut, C. S. Jr., Manual of Mineralogy, (John Wiley & Sons, Inc., New York, 1993) p. 196.Google Scholar
23. Vienna, J. D., Alexander, D. L., Li, H., Schweiger, M. J., Peeler, D. K., and Meaker, T. F., Plutonium Dioxide Dissolution in Glass. Pacific Northwest National Laboratory Report PNNL-11246, p. 16 and appendix (1996).Google Scholar
24. Aldred, A. T., J. of Non-crystalline Solids, 40, 347352 (1980).Google Scholar