Skip to main content Accessibility help
×
Home

Effects of Laterally and Vertically Neighboring Quantum Dots on Formation of a New Quantum Dot

  • Bo Yang (a1) and Vinod K. Tewary (a1)

Abstract

We apply the elastic-energy-release rate (EERR) to identify the favored location of quantum dot (QD) formation in the presence of a laterally or vertically neighboring grown QD on a linear anisotropic elastic substrate. The EERR is defined as the relaxation energy per unit volume of QD growth. Numerical results for InAs QDs on a GaAs(001) substrate are reported. It is shown that the presence of a laterally neighboring QD inhibits the driving force for the formation of a new QD. In contrast, the presence of a buried (vertically) neighboring QD enhances the driving force for the formation of a new QD at its favorable location.

(Publication of the National Institute of Standards and Technology, an agency of the US Government; not subject to copyright.)

Copyright

Corresponding author

*Corresponding author. Current address: Department of Mechanical and Aerospace Engineering, Florida Institute of Technology, Melbourne, FL32901. Tel: 321-674-8092; Fax: 321-674-8813; Electronic mail: boyang@fit.edu.

References

Hide All
1 Bimberg, D., Grundmann, M., and Ledentsov, N. N., Quantum Dot Heterostructures (John Wiley & Sons Ltd., New York, 1998).
2 Yang, B., J. Appl. Phys. 92, 3704 (2002).
3 Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N., Phys. Rev. Lett. 75, 2542 (1995).
4 Darhuver, A. A., Holy, V., Stangl, J., Bauer, G., Krost, A., Heinrichsdorff, F., Grundmann, M., Bimberg, D., Ustinov, V. M., Kopev, P. S., Kosogov, A. O., and Werner, P., Appl. Phys. Lett. 70, 955 (1997).
5 Mateeva, E., Sutter, P., Bean, J. C., and Lagally, M. G., Appl. Phys. Lett. 71, 3233 (1997).
6 Schmidt, O. G., and Eberl, K., Phys. Rev. B 61, 13721 (2000).
7 Thanh, V. L., Yam, V., Nguyen, L. H., Zhang, Y., Boucaud, P., Debarre, D., and Bouchier, D., J. Vac. Sci. Technol. B 20, 1259 (2002).
8 Lita, B., Goldman, R. S., Phillips, J. D., and Bhattacharya, P. K., Appl. Phys. Lett. 74, 2824 (1999).
9 Sutter, P., Mateeva-Sutter, E., and Vescan, L., Appl. Phys. Lett. 78, 1736 (2001).
10 Shchukin, V. A., Bimberg, D., Malyshkin, V. G., and Ledentsov, N. N., Phys. Rev. B 57, 12262 (1998).
11 Ponchet, A., Lacombe, D., Durand, L., Alquier, D., and Cardonna, J.M., Appl. Phys. Lett. 72, 2984 (1998).
12 Tersoff, J., Teichert, C., and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).
13 Holy, V., Springholz, G., Pinczolits, M., and Bauer, G., Phys. Rev. Lett. 83, 356 (1999).
14 Springholz, G., Pinczolits, M., Holy, V., Zerlauth, S., Vavra, I., and Bauer, G., Phys. E 9, 149 (2001).
15 Yang, B., and Pan, E., J. Appl. Phys. 92, 3084 (2002).

Effects of Laterally and Vertically Neighboring Quantum Dots on Formation of a New Quantum Dot

  • Bo Yang (a1) and Vinod K. Tewary (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed