Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T06:27:59.010Z Has data issue: false hasContentIssue false

Effects of Implant Temperature on Disordering of AlAs-GaAs Superlattices

Published online by Cambridge University Press:  26 February 2011

E. A. Dobisz
Affiliation:
Bell Communications Research Red Bank, NJ 07701
B. Tell
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
H. G. Craighead
Affiliation:
Bell Communications Research Red Bank, NJ 07701
S. A. Schwarz
Affiliation:
Bell Communications Research Red Bank, NJ 07701
M. C. Tamargo
Affiliation:
Bell Communications Research Red Bank, NJ 07701
J. P. Harbison
Affiliation:
Bell Communications Research Red Bank, NJ 07701
Get access

Abstract

The effect of implant temperature, superlattice period, and directional diffusion has been studied for silicon impurity-enhanced compositional disordering of GaAs-AlAs superlattices (SL) of 9 ran and 16 nm period. The SL were implanted with Si at temperatures of 483 K, 293 K, and 77 K, with an energy of 100 keV and dose of 2.5 × 1014 cm-2. These were examined by cross-sectional transmission electron microscopy and secondary ion mass spectro-scopy for structural and compositional information. The damage due to implantation prior to annealing is strikingly less for superlattices than for bulk GaAs. All annealed samples exhibited disordering, with the 9 nm period SL exhibiting a deeper disordered region than the 16 nm SL. The greatest enhancement was found in the 9 nm period SL implanted at 77 K, in which the disordering extended from a depth of 25 nm to =300 nm. The mixing was found to be anisotropie, with the SL mixing propagating greater in depth than in the lateral directions. The result has important implications for high resolution patterning possibilities with this method.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laidig, W. D., Holonyak, N., Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
2. Meehan, K., Holonyak, H., Brown, J. M., Nixon, M. A., and Gavrilovic, R., Appl. Phys. Lett. 45, 549 (1984).Google Scholar
3. Kawabe, M., Matwuura, N., Shimizi, N., Hasegawa, F., and Nannichi, Y., Jpn. J. Appl. Phys., 23, L623 (1984).Google Scholar
4. Dobisz, E., Tell, B., Craighead, H. G., and Tamargo, M. C., to appear in J. Appl. Phys. and references therein.Google Scholar
5. Venkatesan, T., Schwarz, S. A., Hwang, D. M., Bhat, R., Koza, M., Yoon, H. W., Mei, P., Arakawa, Y., and Yariv, A., Appl. Phys. Lett., 49, 701 (1986).Google Scholar
6. Ralston, J., Wicks, G. W., Eastman, L. F., DeCooman, B.C., and Carter, C. B., J. Appl. Phys., 59, 120 (1986).Google Scholar
7. Deppe, D. G., Guido, L. J., Holonyak, N., Hsieh, K. C., Burnham, R. D., Thorton, R. L., and Paoi, T. L., Appl. Phys. Lett., 49, 510 (1986) and references therein.Google Scholar
8. Ralston, J., Cornell Program on Submicron Structures, Eighth Annual Review, Oct. 2–3, 1986.Google Scholar
9. Cibert, J., Petroff, P. M., Dolan, G. J., Pearton, S. J., Gossard, A.C., English, J. H., Appl. Phys. Lett. 49, 1275 (1986).Google Scholar
10. Scherer, A., Beebe, E. D., and Craighead, H. G., to appear in J. Vac. Sci. Techno1 B.Google Scholar
11. Gibbons, J. F., Johnson, W. S., and Myloroie, S. W., Projected Range Statistics, Semiconductors, and Related Materials, 2nd ed. (Halsted Press, Stroudsburg, Pa. 1975).Google Scholar
12. Williams, J. S. and Austin, M. W., Appl. Phys. Lett. 36, 994 (1980).Google Scholar
13. Matsui, K., Takatani, S., Fukunaga, T., Narusawa, T., Bamba, Y., and Nakashima, H., Jpn. J. Appl. Phys. 25, L391 (1986).Google Scholar
14. Schwarz, S. A., Venkatesan, T., Whang, D. M., Woon, H. W., Bhat, R., and Arakawa, Y., to appear in Appl. Phys. Lett.Google Scholar
15. Greiner, M.E. and Gibbons, J.F., Appl. Phys. Lett., 44, 750 (1984).Google Scholar
16. Furukawa, S., Matsumura, H., and Ishiwara, H., Jpn. J. Appl. Phys. 11, 134 (1972).Google Scholar
17. Morgan, D.V., Eisen, F.H., and Ezis, A., IEE Proc. 128–1, 109 (1981).Google Scholar
18. Kobayashi, J., Nakajima, M., Bamba, Y., Fukunaga, T., Matsui, K., Ishida, K., Nakashima, H., and Ishida, K., Jpn. J. Appl. Phys. 25, L385 (1986) and references therein.Google Scholar