Skip to main content Accessibility help
×
Home

Effects of Implant Temperature on Disordering of AlAs-GaAs Superlattices

  • E. A. Dobisz (a1), B. Tell (a2), H. G. Craighead (a1), S. A. Schwarz (a1), M. C. Tamargo (a1) and J. P. Harbison (a1)...

Abstract

The effect of implant temperature, superlattice period, and directional diffusion has been studied for silicon impurity-enhanced compositional disordering of GaAs-AlAs superlattices (SL) of 9 ran and 16 nm period. The SL were implanted with Si at temperatures of 483 K, 293 K, and 77 K, with an energy of 100 keV and dose of 2.5 × 1014 cm-2. These were examined by cross-sectional transmission electron microscopy and secondary ion mass spectro-scopy for structural and compositional information. The damage due to implantation prior to annealing is strikingly less for superlattices than for bulk GaAs. All annealed samples exhibited disordering, with the 9 nm period SL exhibiting a deeper disordered region than the 16 nm SL. The greatest enhancement was found in the 9 nm period SL implanted at 77 K, in which the disordering extended from a depth of 25 nm to =300 nm. The mixing was found to be anisotropie, with the SL mixing propagating greater in depth than in the lateral directions. The result has important implications for high resolution patterning possibilities with this method.

Copyright

References

Hide All
1. Laidig, W. D., Holonyak, N., Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).
2. Meehan, K., Holonyak, H., Brown, J. M., Nixon, M. A., and Gavrilovic, R., Appl. Phys. Lett. 45, 549 (1984).
3. Kawabe, M., Matwuura, N., Shimizi, N., Hasegawa, F., and Nannichi, Y., Jpn. J. Appl. Phys., 23, L623 (1984).
4. Dobisz, E., Tell, B., Craighead, H. G., and Tamargo, M. C., to appear in J. Appl. Phys. and references therein.
5. Venkatesan, T., Schwarz, S. A., Hwang, D. M., Bhat, R., Koza, M., Yoon, H. W., Mei, P., Arakawa, Y., and Yariv, A., Appl. Phys. Lett., 49, 701 (1986).
6. Ralston, J., Wicks, G. W., Eastman, L. F., DeCooman, B.C., and Carter, C. B., J. Appl. Phys., 59, 120 (1986).
7. Deppe, D. G., Guido, L. J., Holonyak, N., Hsieh, K. C., Burnham, R. D., Thorton, R. L., and Paoi, T. L., Appl. Phys. Lett., 49, 510 (1986) and references therein.
8. Ralston, J., Cornell Program on Submicron Structures, Eighth Annual Review, Oct. 2–3, 1986.
9. Cibert, J., Petroff, P. M., Dolan, G. J., Pearton, S. J., Gossard, A.C., English, J. H., Appl. Phys. Lett. 49, 1275 (1986).
10. Scherer, A., Beebe, E. D., and Craighead, H. G., to appear in J. Vac. Sci. Techno1 B.
11. Gibbons, J. F., Johnson, W. S., and Myloroie, S. W., Projected Range Statistics, Semiconductors, and Related Materials, 2nd ed. (Halsted Press, Stroudsburg, Pa. 1975).
12. Williams, J. S. and Austin, M. W., Appl. Phys. Lett. 36, 994 (1980).
13. Matsui, K., Takatani, S., Fukunaga, T., Narusawa, T., Bamba, Y., and Nakashima, H., Jpn. J. Appl. Phys. 25, L391 (1986).
14. Schwarz, S. A., Venkatesan, T., Whang, D. M., Woon, H. W., Bhat, R., and Arakawa, Y., to appear in Appl. Phys. Lett.
15. Greiner, M.E. and Gibbons, J.F., Appl. Phys. Lett., 44, 750 (1984).
16. Furukawa, S., Matsumura, H., and Ishiwara, H., Jpn. J. Appl. Phys. 11, 134 (1972).
17. Morgan, D.V., Eisen, F.H., and Ezis, A., IEE Proc. 128–1, 109 (1981).
18. Kobayashi, J., Nakajima, M., Bamba, Y., Fukunaga, T., Matsui, K., Ishida, K., Nakashima, H., and Ishida, K., Jpn. J. Appl. Phys. 25, L385 (1986) and references therein.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed