Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T00:53:22.486Z Has data issue: false hasContentIssue false

Effects of Hydrolysis On Metallo-Organic Solution Deposition of PZT FILMS

Published online by Cambridge University Press:  28 February 2011

Russell A. Lipeles
Affiliation:
The Aerospace Corporation, Chemistry and Physics Laboratory, P.O. Box 92957, Los Angeles, CA 90245
Dianne J. Coleman
Affiliation:
The Aerospace Corporation, Chemistry and Physics Laboratory, P.O. Box 92957, Los Angeles, CA 90245
Martin. S. Leung
Affiliation:
The Aerospace Corporation, Chemistry and Physics Laboratory, P.O. Box 92957, Los Angeles, CA 90245
Get access

Abstract

The effects of hydrolysis on the degree of polymerization during metallo-organic solution deposition of lead zirconate titanate (PZT) films have been investigated. The reaction of lead 2-ethylhexanoate, zirconium n-tetrapropoxide, and titanium tetrabutoxide in isopropanol with water were studied using thermogravimetry, specular reflectance Fourier transform infrared spectroscopy (FTIR) and optical and electron microscopy.

Films prepared from coating solutions having varying amounts of water exhibited dramatic differences in morphology. The films were spin-coated on platinum coated fused silica substrates and annealed at 525°C for 30 minutes. Unhydrolyzed coating solutions and solutions with a mole ratio of water to total metal of 0.5 yielded perovskite films with 0.5–5μm grains. A mole ratio of 1.5 (the amount of water required to completely hydrolyze the metallo–organics in the solution) formed amorphous, porous films. The stability of the prepolymerized films inhibits crystallization and densification at moderate temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ishida, I. M., Matsunami, H., and Tanaka, T., Appl. Phys. Lett., 31 433434 (1977).Google Scholar
2. Wasa, K., Yamazaki, O., Adachi, H., Kawaguchi, T., and Setsune, K., J. Lightwave Technol., LT-2, 710–13 (1984).CrossRefGoogle Scholar
3. Krupanidhi, S.B, Sayer, M., El-Assal, K., Jen, C. K., and Farnell, G. W., J Canadian Ceram. Soc., 53, 2833 (1984).Google Scholar
4. Okada, A., J Appl. Phys., 48, 29052909 (1977).CrossRefGoogle Scholar
5. Adachi, H., Kawaguchi, T., Setsume, K., Ohji, K., and Wasa, K., Appl. Phys. Lett., 42, 867–8 (1983).CrossRefGoogle Scholar
6. Krupanidhi, S. B., Maffei, N., Sayer, M., and El-Assal, K, Ferroelectrics, 51, 9398 (1983).Google Scholar
7. Matsunami, H., Suzuki, M., Ishida, M., and Tanaka, T., Japan. J. Appl. Phys., 15, 1163–4 (1976).CrossRefGoogle Scholar
8. Fukushima, J., Kodaira, K., and Matsushita, T., J. Material Sci., 19, 595598 (1984).CrossRefGoogle Scholar
9. Lipeles, R. A., Ives, N. A., and Leung, M. S., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L and Ulrich, D. R. (Wiley, New York, 1986).Google Scholar
10. Ulrich, D. R., Ceramic Bull., 64, 1444–8 (1985).Google Scholar
11. Bradley, D. C., Mehrotra, R. C., and Gaur, D. P., Metal Alkoxides (Academic Press, New York, 1978).Google Scholar
12. Last, J. T., Phys. Rev., 105, 1740–50 (1957).CrossRefGoogle Scholar
13. Spitzer, W. G., Miller, R. C., Kleinman, D. A., and Howarth, L. E., Phys. Rev., 126, 1710–21 (1962).Google Scholar
14. Craver, C. D., The Coblentz Society Desk Book of Infrared Spectra, (The Coblentz Society, Inc., Kirkwood, MO, 1977) pp 100,106Google Scholar