Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-24T04:47:40.953Z Has data issue: false hasContentIssue false

The Effects of High Temperature Exposure on the Fracture of Thin Tantalum Nitride Films

Published online by Cambridge University Press:  15 February 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94551–0969
S. K. Venkataraman
Affiliation:
University of Minnesota, Minneapolis, MN 55455
J. C Nelson
Affiliation:
University of Minnesota, Minneapolis, MN 55455
W Worobey
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0957
Andw. W. Gerberich
Affiliation:
University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Continuous microscratch testing was used in this study to determine the effects of elevated temperature exposure on the adhesion and toughness of thin tantalum nitride films. These films were sputter-deposited at room temperature on sapphire substrates to a nominal thickness of 600 nm with some films heated to 600°C in vacuum while others were heated to 600°C in air. The films heated in vacuum exhibited no changes in composition or structure while the films heated in air completely transformed to tantalum pentoxide. Comparison of the results shows that the interfacial fracture toughness increases from 0.5 MPa-m1/2 for as-sputtered films to 0.8 MPa-m1/2 for films heated in air. However, the toughness increases to more than 3.0 MPa-m1/2 when the films are heated in vacuum. The increase in toughness values follows the reduction in deposition defect content where formation of an oxygen deficient tantalum oxide layer in air from the as-sputtered film increases interfacial toughness slightly while full densification of the tantalum nitride films in vacuum increases toughness to very high levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Evans, A. G. and Ruhle, M., MRS Bulletin, XV (10), 46 (1990).Google Scholar
2. Bibeau, W. E., Porter, W. A., and Parker, D. L., Proc. Electronic Comp. Conf., 28, 427 (1978).Google Scholar
3. Tremble, K. P. and Ruhle, M., in Metal-Ceramic Interfaces, edited by Ruhle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergammon Press, Oxford, 1990) p. 144.Google Scholar
4. Mittal, K. L., Electrocomponent Science and Technology, 3, 21 (1976).Google Scholar
5. Chopra, K. L., Thin Film Phenomena, (McGraw-Hill Book Company, New York, 1969) p. 267327.Google Scholar
6. Adams, J. R. and Kramer, D. K., Surface Science, 56, 482 (1976).Google Scholar
7. Au, C. L., Anderson, W. A., Schmitz, D. A., Flassayer, J. C., and Collins, F. M., J. Mater. Res., 5, 1224 (1990).Google Scholar
8. Susumu, S., Murasugi, K., and Kaminishi, K., Proc. Electron. Components Conf., 26, 177 (1976).Google Scholar
9. Brady, D. P., Fuss, F. N., and Gerstenberg, D., Thin Solid Films, 66 (1980) 287302.Google Scholar
10. Doerner, M. F. and Nix, W. D., J. Mater. Res., 1, 601 (1986).Google Scholar
11. Nix, W. D., Metall. Trans. A, 20A, 2217 (1989).Google Scholar
12. Oliver, W. C. and Pharr, G. M., J. Mater. Res., 7, 1564 (1992).CrossRefGoogle Scholar
13. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res., 8, 685 (1993).Google Scholar
14. Wu, T. W., Hwang, C., Lo, J., and Alexopoulos, P. S., Thin Solid Films, 166, 299 (1988).Google Scholar
15. Wu, T. W., J. Mater. Res, 6, 407, (1991).CrossRefGoogle Scholar
16. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res., 7, 1126 (1992).Google Scholar
17. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., Thin Solid Films, 223, 269 (1993).Google Scholar
18. Zhao, A., Kolawa, E., and Nicolet, M.-A., J. Amer. Vac. Sci. Technol. A, 4, 3139 (1986).Google Scholar
19. Yamagishi, H. and Miyauchi, M., Japanese J. of Applied Physics, 26, 852 (1987).Google Scholar
20. Kofstad, P., Corrosion, 24, 379 (1968).Google Scholar
21. Rickersby, D. S., Surface and Coatings Technology, 36, 541 (1988).Google Scholar
22. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., in Thin Film Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E., and Borgesen, P. (Mater. Res. Soc. Proc. 308, Pittsburgh, PA, 1993) p. 621.Google Scholar
23. Benjamin, P. and Weaver, C., Proc. Royal. Soc., London, A254, 163 (1960).Google Scholar
24. Venkataraman, S. K., Nelson, J. C., Moody, N. R., Kohlstedt, D. L., and Gerberich, W. W., “Micro-Mechanical Characterization of Tantalum Nitride Thin Films on Sapphire Substrates,” Presented at the Symposium on Polycrystalline Thin Films-Structure, Texture, Properties and Applications, 1994 MRS Spring Meeting, San Francisco CA.Google Scholar
25. Oblas, D. W. and Hoda, H., J. Appl. Physics, 39, 6106 (1968).CrossRefGoogle Scholar
26. Lee, W. W. and Oblas, D., J. Vac. Sci. Technol., 7, 129 (1970).Google Scholar
27. Thornton, J. A. and Hoffman, D. W., J. Vac. Sci. Technol., 14, 164 (1977).Google Scholar
28. Thornton, J. A., Tabock, J., and Hoffman, D. W., Thin Solid Films, 64, 111 (1979).Google Scholar