Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T19:48:13.801Z Has data issue: false hasContentIssue false

Effects of He-irradiation on the Metal-to-insulator Transition of Vanadium Dioxide Nanoclusters

Published online by Cambridge University Press:  01 February 2011

Helmut Karl
Affiliation:
helmut.karl@physik.uni-augsburg.de, University of Augsburg, Physics Department, Universitaetsstr. 1, Augsburg, D-86135, Germany
Jing Peng
Affiliation:
jingpeng@student.uni-augsburg.de, University Augsburg, Physics Department, Augsburg, Germany
Bernd Stritzker
Affiliation:
bernd.stritzker@physik.uni-augsburg.de, University Augsburg, Physics Department, Augsburg, Germany
Get access

Abstract

In this work nanoclusters of vanadium dioxide (VO2) buried in 200 nm thick SiO2 on silicon have been irradiated with increasing fluences of He ions. The projected range of He was chosen to be 650 nm in order to avoid residual He in the VO2 nanoclusters and the surrounding SiO2. The VO2 nanoclusters have been synthesized by sequential ion implantation of the elements vanadium and oxygen followed by a rapid thermal annealing step. Irradiation with He ions leads to the generation of reversible lattice point defects in the nanocrystalline VO2 precipitates. Simultaneously there is no electronic doping by He incorporation. The effect of the local- and long-range structural disorder on the metal-to-insulator phase transition has been investigated as a function of He fluence by μ-Raman spectroscopy and temperature dependent spectral ellipsometry. The disappearance of a low-frequency Raman mode indicates increasing disorder in the long-range crystal structure due to He irradiation. At the same time the thermal hysteresis of the metal-to-insulator transition narrows.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Morin, F. J. Physical Review Letters, 3, 1, 34 (1959).Google Scholar
2 Freeman, A. J. Ellis, E. E. Gupta, M.. Physical Review B, 16, 33383351 (1977).Google Scholar
3 Chen, C. Wang, R. Shang, L. Guo, C.. Appl. Phys. Lett., 93, 171101 (2008).10.1063/1.3009569Google Scholar
4 Fan, W. Huang, S. Cao, J. Ertekin, E. Barrett, C. Khanal, D. R. et al. Physical Review B, 80, 24 (2009).Google Scholar
5 Cao, J.., Ertekin, E. Srinivasan, V. Fan, W. Huang, S. H. Zheng et. al Nature Nanotechnology, 4, 11, 732–737 (2009).Google Scholar
6 Lopez, R. Boatner, L. A. Haynes, T. E. Applied Physics Letters, 79, 19, 3161–3163 (2001).Google Scholar
7 Lopez, R. Boatner, L. A. Haynes, T. E. Feldman, L. C. Haglund, R. F. et al. Journal of Applied Physics, 92, 4031 (2002).Google Scholar
8 Lopez, R. Boatner, L. A. Haynes, T. E.. Applied Physics Letters, 85, 8, 14101412 (2004).Google Scholar
9 Driscoll, T. Palit, S. Qazilbash, M. M. et al. Appl. Phys. Lett., 93, 024101 (2008).Google Scholar
10 Ziegler, J. F. Biersack, J. P. Littmark, U.: The Stopping and Range in Solids. Herausgegeben von U. S.A. Pergamon Presss (1985).Google Scholar
11 Karl, H. Grosshans, I. Stritzker, B.. Meas. Sci. & Technol., 216, 396401 (2004).Google Scholar
12 Karl, H. Combinatorial Ion Beam Synthesis of II–VI Compound Semiconductor Nanoclusters: Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials, edited by Potyrailo, R. and Maier, W. F. CRC-Book (2006).Google Scholar
13 Huber, P. Karl, H. Stritzker, B.. Appl. Surf. Sci.,252, 20, 24972502 (2006).Google Scholar
14 Grosshans, I. Karl, H. Stritzker, B.. Mat. Sci. and Eng. B-Solid State Mat. for Adv. Technol., 101, 1-3, 212251 (2003).Google Scholar
15 Petrov, G. I. Yakovlev, V. V. J. Squier. Appl. Phys. Lett., 81, 6, 10231025 (2002).Google Scholar
16 Beatie, I. R. Gilson, T. R.. J. Chem. Soc (A), 16, 23222327 (1969).10.1039/j19690002322Google Scholar
17 Chou, J. Y. Lensch-Falk, J. L., Hemesath, E. R. Lauhon, L. J. et al. Journal of Applied Physics, 105, 3 (2009).10.1063/1.3075763Google Scholar
18 Schilbe, P.. Physica B, 316–317, 600602 (2002).Google Scholar
19 Julien, C. Guesdon, J. P. Gorenstein, A. Khelafa, A. I. Ivanov et. al Applied Surface Science, 90, 3, 389391 (1995).10.1016/0169-4332(95)00190-5Google Scholar
20 Donev, E. U. Lopez, R. Feldman, L. C. Haglund, R. F. et al. Nano Letters, 9, 2, 702706 (2009).Google Scholar
21 Wei, J. Wang, Z. Chen, W. Cobden, D. H. et al. Nature Nanotechnology, 4, 7, 420424 (2009).Google Scholar