Skip to main content Accessibility help
×
Home

The Effects of Ground and Space Processing on the Properties of Organic, Polymeric, and Colloidal Materials

  • Donald O. Frazier (a1), Mark S. Paley (a1), Benjamin G. Penn (a1), Hossin A. Abdeldayem (a1), David D. Smith (a1), William K. Witherow (a1), William E. Carswell (a1) and Maria I. Zugrav (a2)...

Abstract

In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic materials, which allows flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films such as Langmuir-Blodgett (LB) and self-assembly techniques,2-4 vapor deposition.5-7 growth from sheared solution or melt,8,9 and melt growth between glass plates.10 Organic-based materials have many features that make them desirable for use in optical devices, such as high second- and third-order nonlinearity, flexibility of molecular design, and damage resistance to optical radiation. However, processing difficulties for crystals and thin films has hindered their use in devices.

We discuss the potential role of microgravity processing of a few organic and polymeric materials. It is of interest to note how materials with second- and third-order NLO behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for frequency conversion and electro-optics. The goal of minimizing optical loss obviously depends on processing methods. For solution-based processes, such as solution crystal growth and solution photopolymerization, it is well known that thermal- and solutal-density gradients can initiate buoyancy-driven convection. Resultant fluid flows can affect transport of material to and from growth interfaces and become manifest in the morphology and homogeneity of the growing film or crystal. Likewise, buoyancy-driven convection can hinder production of defect-free, high-quality crystals or films during crystal and film growth by vapor deposition.

Copyright

References

Hide All
1 Nayar, B.K. and Winter, C.S., Optical and Quantum Electronics, 22, 297 (1990).
2 Carter, G.M., Chen, Y.J., and Tripathy, S.K., Appl. Phys. Lett., 43, 891 (1988).
3 Kajzar, F., Meissier, J., Zyss, J., and Ledoux, I., Opt. Commun., 45, 133 (1983).
4 Kajzar, F., and Messier, J., Thin Solid Films, 11, 132 (1988).
5 Debe, M.K. and Kam, K.K., Thin Solid Films, 186, 289 (1990).
6 Frazier, D.O., Penn, B.G., Witherow, W.K., and Paley, M.S., SPIE Crystal Growth in Space and Related Diagnostics, 1557, 86 (1991).
7 Wegner, G.Z., Naturforsch, 246, 824 (1969).
8 Thakur, M., and Meyler, S., Macromolecules, 18, 2341 (1985).
9 Thakur, M., Carter, G.M., Meyler, S., and Hryniewicz, H., Polymer Preprints, 27(1), 49 (1986).
10 Ledoux, I., Josse, D., Vidakovic, P., and Zyss, J., Optical Engineering, 27(1), 49 (1986).
11 Islam, M.N., Phys. Today, 34 (May 1994).
12 Franken, P.A., Hill, A.E., Peters, C.W., and Weinreich, G., Phys. Rev. Lett., 7, 118 (1961).
13 Davydov, B.L., Derkacheva, L.D., Dunina, V.V., Zhabotinskii, M.E., V.E Zolin, Koreneva, L.G., and Samokhina, M.A., Opt. Spectrosc., 30, 274 (1971).
14 Paley, M.S., Frazier, D.O., McManus, S.P., Zutaut, S.E., and Sangahadasa, M., Chem. Mater., 5, 1641 (1993).
15 Debe, M.K., Prog. Surf. Sci., 24(1-4), 1 (1987).
16 Liu, C.J., Debe, M.K., Leung, P.C., and Francis, C.V., Appl. Phys. Comm., 11(2-3), 151 (1992).
17 Stegeman, G.I. and Miller, A., in Photonics and Switching, edited by Midwinter, J.E. (Academic Press, London, 1994), pp. 81145.
18 Kam, K.K., Debe, M.K., Poirier, R.J., and Drube, A.R., J. Vac. Sci. Technol., A5(4), 1914 (1987).
19 Debe, M.K., Kam, K.K., Liu, C.J., and Poirier, R.J., J. Vac. Sci. Technol., A6, 1907 (1988).
20 Debe, M.K., J. Appl. Phys., 55, 3354 (1984); M.K. Debe and T.N. Tommet, J. Appl. Phys., 62, 1546 (1987).
21 Debe, M.K., Poirier, R.J., and Kam, K.K., Thin Solid Films, 197, 335 (1991).
22 Debe, M.K. and Field, D.R., J. Vac. Sci. Technol., A9, 1265 (1991).
23 Debe, M.K., J. Vac. Sci. Technol., A10(4), 2816 (1992).
24 Debe, M.K., J. Vac. Sci. Technol., 21, 74 (1992).
25 Debe, M.K., Poirier, R.J., Erickson, D.D., Tommet, T.N., Field, D.R., and White, K.M., Thin Solid Films, 186, 257 (1990).
26 Debe, M.K. and Poirier, R.J., Thin Solid Films, 186, 327 (1990).
27 Bloor, D. and Chance, R.R., Eds.: Polydiacetylenes (Martinus Nijhoff, Dordrecht, The Netherlands, 1985).
28 Chemla, D.S. and Zyss, J., Eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 2 (Academic Press, Orlando, FL, 1987).
29 Prasad, P.N. and Williams, D.J., Introduction to Nonlinear Optical Effects in Molecules and Polymers (John Wiley and Sons, Inc.: NY, 1991), p. 232.
30 Carter, G.M., Thakur, M.K., Chen, Y.J., and Hryniewicz, J.V., Appl. Phys. Lett., 47, 457 (1985).
31 Hermann, J.P. and Smith, P.W., Digest of Technical Papers—11th International Quantum Electronics Conference, 656 (1980).
32 Paley, M.S., Frazier, D.O., McManus, S.P., Donovan, D.N., U.S. Patent No. 5,451,433 (September 19, 1995).
33 Paley, M.S., Frazier, D.O., Abdeldeyem, H.A., Armstrong, S., and McManus, S.R., J. Am. Chem. Soc., 117(17), 4775 (1995).
34 Pearson, E., Witherow, W.K., and Penn, B.G. (private communication).
35 Thakur, M. and Krol, D.M., Appl. Phys. Lett., 56(13), 1213 (1990).
36 Samoc, M., The Australian National University, Laser Physics Centre (private communication).
37 Stegeman, G.I. and Torruellas, W. in Electrical, Optical, and Magnetic Pmoperties of Organic Solid State Materials, edited by Garito, A.F., Jen, A.K., Lee, C.Y-C., Dalton, L. (MRS Symposium Proceedings, Materials Research Society, Pittsburg, PA, 1994) p. 397.
38 Walter, H.U., Ed., Fluid Sciences and Materials in Space ESA (Springer-Verlag, NY, 1987).
39 Antar, B. and Nuotio-Antar, V.S., Fundamentals of Low-Gravity Fluid Dywamics and Heat Transfer (CRC Press, 1994).
40 Frazier, D.O., Hung, R.J., Paley, M.S., and Long, Y.T., J. Crys. Growth (unpublished).
41 Antar, B.N., Phys. Fluids, 30(2), 322 (1987).
42 Garnett, J.C. Maxwell, Philosophical Transactions of the Royal Society of London, 203, 385 (1904), 205, 237 (1906).
43 Ricard, D., Rousignol, P., and Flytzanis, C., Opt. Lett., 10, 511 (1985).
44 Sipe, J.W. and Boyd, R.W., Phys. Rev., A 46, 1614 (1992).
45 Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., and Whyman, R., J. Chem. Soc. Chem. Commun., 801 (1994).
46 Paley, M.S., Armstrong, S., Witherow, W.K., and Frazier, D.O., Chem. Mater., 8(4), 912 (1996).
47 Paley, M.S., Frazier, D.O., Abdeldeyem, H.A., and McManus, S.P., Chem. Mater., 6(12), 2213 (1994).
48 Tsiboulkis, J., Werninck, A.R., Shand, A.J., and Milburn, G.H.W., Liquid Crystals, 3(10), 1393 (1988).
49 Kim, T., Crooks, R.M., Tsen, M., and Sun, L., J. Am. Chem. Soc., 117, 3963 (1995).
50 Cheong, D.W., Kim, W.H., Samuelson, L.A., Kumar, J., and Tripathy, S.K., Macromolecules, 29, 1416 (1996).
51 Kim, W.H., Bihari, B., Moody, R., Kodali, N.B., Kumar, J., and Tripathy, S.K., Macromolecules, 28, 642 (1995),
52 Muller, H., Nuyken, O., Strtohriegl, P., Makromol. Chem. (Rapid Cornmun. 1992), 125.
53 Sandman, D.J., Ed., Solid State Polymerization (American Chemical Society, Washington, DC, 1987).
54 Frazier, D.O., Hung, R.J., Paley, M.S., Penn, B.G., and Long, Y.T., J. Crys. Growth, 171, 288 (1997).
55 Markham, B.L., Greenwell, D.W., and Rosenberger, F., J. Cryst. Growth, 51, 426 (1981).
56 Ho, Z.Z., Ju, C.Y., and Hetherington, W.M. III, J. AppI. Phys., 62, 716 (1987).
57 Shirk, J.S., Lindle, J.R., Bartoli, F.J., Hoffman, C.A., Kafafi, Z.H., and Snow, A.W., Appl. Phys. Lett., 55, 1287 (1989).
58 Wu, J.W., Heflin, J.R., Norwood, R.A., Wong, K.Y., Zamani-Khamiri, O., Garito, A.F., Kalyanaraman, F., and Sounik, J., J. Opt. Soc. Am., B, 6(4), 707 (1989).
59 Matsuda, M., Okada, S., Masaki, A., Nakanishi, H., Suda, Y., Shigehara, K., and Yamada, Y., Proc. SPIE, 1337, 105 (1990).
60 Hosoda, M., Wada, T., Yamada, A., Garito, A.F., and Sasabe, H., Jpn. J. Appl. Phys., 30, L1486 (1991).
61 Hoshi, H., Nakamura, N., and Maruyama, Y., J. Appl. Phys., 70, 7244 (1991).
62 Suda, Y., Shiegehara, K., Yamada, A., Matsuda, H., Okada, S., Masaki, A., and Nakanishi, H., SPIE, 1560, 75 (1991).
63 Casstevens, M.K., Samoc, M., Pfleger, J., and Prasad, R.N., J. Chem. Phys., 92, 2019 (1990).
64 Prasad, P.N. and Williams, D.J., Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley Interscience, NY, 1991), p. 205.
65, Reeves, R.J., Powell, R.C., Chang, Y.H., Ford, W.T., and Zhu, W., Opt. Mater., 5, 43 (1996).
66 Dorsinville, R., Yang, L., Alfano, R.R., Zamboni, R., Danieli, R., Ruani, G., and Taliani, C., Opt. Lett., 14(23), 1321 (1989).
67 Ho, Z.Z. and Peyghambarian, N., Chem. Phys. Lett., 148, 107 (1988).
68 Williams, V.S., Mazumdar, S., Armstrong, N.R., Ho, Z.Z., and Peyghambarian, N., J. Phys. Chem., 96, 4500 (1992).
69 Wada, T., Yamanda, S., Matsuoka, Y., Grossmn, C.H., Shigehara, K., Sasbe, H., Yamada, A., and Garito, A.F., Nonlinear Optics of Organics and Semiconductors (T. Kobayashi, Springer Berlin, 1989), p. 292.
70 Hosada, M., Wada, T., Yamada, A., Garito, A., and Sasabe, H., Jpn. J. Appl. Phys., 30(8B), L1486 (1991).
71 Chollet, P.A., Kajzar, F., and LeMoigne, J., SPIE, 1273, 87 (1990).
72 Kumagai, K., Mitzutani, G., Tsukioka, H., Yamauchi, T., and Ushioda, S., Phys. Rev. B, 48(19), 14488 (1993).
73 Yamada, T., Hoshi, H., Ishikawa, K., Takezoe, H., and Fukuda, A., Jpn. J. Appl. Phys., 34, L299 (1995).
74 Debe, M.K., and Kam, K.K., Thin Solid Films, 186, 289 (1990).
75 Debe, M.K. and Poirier, R.J., Thin Solid Films, 186, 327 (1990).
76 Debe, M.K., J. Vc. Sci. Technol., A4(3), 273 (1986).
77 Abdeldayem, H., Frazier, D.O., Penn, B.G., Witherow, W.K., Banks, C., Smith, D.D., and Sunkara, H., Opt. Comm., in press.
78 Antipin, M.Y., Timofeeva, T.V., Clark, R.D., Nesterov, V.N., Sanghadasa, M., Barr, T.A., Penn, B., Romero, L., and Romero, M., J. Phys. Chem. A, 102, 7222 (1998).
79 Wada, T., Grossman, G.H., Yamada, S., Yamada, A., Garito, A.F., Sasabe, H., Mater. Res Soc. Symp. Proc., 173, 519 (1990).
80 Antipin, M. Yu, Barr, T.A., Cardelino, B., Clark, R.D., Moore, C.E., Myers, T., Penn, B., Romero, M., Sanhadasa, M., Timofeeva, T.V., J. Phys. Chem., 101, 2770 (1997).
81 Zugrav, M.I., Carswell, W.E., Lundquist, C.E., Wessling, E.C., Leslie, T.M., Materials Research in Low Gravity (SPIE Proceedings, 3123, San Diego, California, 28-29 July 1997) p. 110.

Related content

Powered by UNSILO

The Effects of Ground and Space Processing on the Properties of Organic, Polymeric, and Colloidal Materials

  • Donald O. Frazier (a1), Mark S. Paley (a1), Benjamin G. Penn (a1), Hossin A. Abdeldayem (a1), David D. Smith (a1), William K. Witherow (a1), William E. Carswell (a1) and Maria I. Zugrav (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.