Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T20:13:54.425Z Has data issue: false hasContentIssue false

The Effects of Ground and Space Processing on the Properties of Organic, Polymeric, and Colloidal Materials

Published online by Cambridge University Press:  10 February 2011

Donald O. Frazier
Affiliation:
NASA Marshall Space Flight Center, Space Sciences Laboratory, Huntsville, AL 35812
Mark S. Paley
Affiliation:
NASA Marshall Space Flight Center, Space Sciences Laboratory, Huntsville, AL 35812
Benjamin G. Penn
Affiliation:
NASA Marshall Space Flight Center, Space Sciences Laboratory, Huntsville, AL 35812
Hossin A. Abdeldayem
Affiliation:
NASA Marshall Space Flight Center, Space Sciences Laboratory, Huntsville, AL 35812
David D. Smith
Affiliation:
NASA Marshall Space Flight Center, Space Sciences Laboratory, Huntsville, AL 35812
William K. Witherow
Affiliation:
NASA Marshall Space Flight Center, Space Sciences Laboratory, Huntsville, AL 35812
William E. Carswell
Affiliation:
NASA Marshall Space Flight Center, Space Sciences Laboratory, Huntsville, AL 35812
Maria I. Zugrav
Affiliation:
Consortium for Materials Development in Space, University of Alabama in Huntsville, Huntsville, Alabama 35899
Get access

Abstract

In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic materials, which allows flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films such as Langmuir-Blodgett (LB) and self-assembly techniques,2-4 vapor deposition.5-7 growth from sheared solution or melt,8,9 and melt growth between glass plates.10 Organic-based materials have many features that make them desirable for use in optical devices, such as high second- and third-order nonlinearity, flexibility of molecular design, and damage resistance to optical radiation. However, processing difficulties for crystals and thin films has hindered their use in devices.

We discuss the potential role of microgravity processing of a few organic and polymeric materials. It is of interest to note how materials with second- and third-order NLO behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for frequency conversion and electro-optics. The goal of minimizing optical loss obviously depends on processing methods. For solution-based processes, such as solution crystal growth and solution photopolymerization, it is well known that thermal- and solutal-density gradients can initiate buoyancy-driven convection. Resultant fluid flows can affect transport of material to and from growth interfaces and become manifest in the morphology and homogeneity of the growing film or crystal. Likewise, buoyancy-driven convection can hinder production of defect-free, high-quality crystals or films during crystal and film growth by vapor deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nayar, B.K. and Winter, C.S., Optical and Quantum Electronics, 22, 297 (1990).Google Scholar
2 Carter, G.M., Chen, Y.J., and Tripathy, S.K., Appl. Phys. Lett., 43, 891 (1988).Google Scholar
3 Kajzar, F., Meissier, J., Zyss, J., and Ledoux, I., Opt. Commun., 45, 133 (1983).Google Scholar
4 Kajzar, F., and Messier, J., Thin Solid Films, 11, 132 (1988).Google Scholar
5 Debe, M.K. and Kam, K.K., Thin Solid Films, 186, 289 (1990).Google Scholar
6 Frazier, D.O., Penn, B.G., Witherow, W.K., and Paley, M.S., SPIE Crystal Growth in Space and Related Diagnostics, 1557, 86 (1991).Google Scholar
7 Wegner, G.Z., Naturforsch, 246, 824 (1969).Google Scholar
8 Thakur, M., and Meyler, S., Macromolecules, 18, 2341 (1985).Google Scholar
9 Thakur, M., Carter, G.M., Meyler, S., and Hryniewicz, H., Polymer Preprints, 27(1), 49 (1986).Google Scholar
10 Ledoux, I., Josse, D., Vidakovic, P., and Zyss, J., Optical Engineering, 27(1), 49 (1986).Google Scholar
11 Islam, M.N., Phys. Today, 34 (May 1994).Google Scholar
12 Franken, P.A., Hill, A.E., Peters, C.W., and Weinreich, G., Phys. Rev. Lett., 7, 118 (1961).Google Scholar
13 Davydov, B.L., Derkacheva, L.D., Dunina, V.V., Zhabotinskii, M.E., V.E Zolin, Koreneva, L.G., and Samokhina, M.A., Opt. Spectrosc., 30, 274 (1971).Google Scholar
14 Paley, M.S., Frazier, D.O., McManus, S.P., Zutaut, S.E., and Sangahadasa, M., Chem. Mater., 5, 1641 (1993).Google Scholar
15 Debe, M.K., Prog. Surf. Sci., 24(1-4), 1 (1987).Google Scholar
16 Liu, C.J., Debe, M.K., Leung, P.C., and Francis, C.V., Appl. Phys. Comm., 11(2-3), 151 (1992).Google Scholar
17 Stegeman, G.I. and Miller, A., in Photonics and Switching, edited by Midwinter, J.E. (Academic Press, London, 1994), pp. 81145.Google Scholar
18 Kam, K.K., Debe, M.K., Poirier, R.J., and Drube, A.R., J. Vac. Sci. Technol., A5(4), 1914 (1987).Google Scholar
19 Debe, M.K., Kam, K.K., Liu, C.J., and Poirier, R.J., J. Vac. Sci. Technol., A6, 1907 (1988).Google Scholar
20 Debe, M.K., J. Appl. Phys., 55, 3354 (1984); M.K. Debe and T.N. Tommet, J. Appl. Phys., 62, 1546 (1987).Google Scholar
21 Debe, M.K., Poirier, R.J., and Kam, K.K., Thin Solid Films, 197, 335 (1991).Google Scholar
22 Debe, M.K. and Field, D.R., J. Vac. Sci. Technol., A9, 1265 (1991).Google Scholar
23 Debe, M.K., J. Vac. Sci. Technol., A10(4), 2816 (1992).Google Scholar
24 Debe, M.K., J. Vac. Sci. Technol., 21, 74 (1992).Google Scholar
25 Debe, M.K., Poirier, R.J., Erickson, D.D., Tommet, T.N., Field, D.R., and White, K.M., Thin Solid Films, 186, 257 (1990).Google Scholar
26 Debe, M.K. and Poirier, R.J., Thin Solid Films, 186, 327 (1990).Google Scholar
27 Bloor, D. and Chance, R.R., Eds.: Polydiacetylenes (Martinus Nijhoff, Dordrecht, The Netherlands, 1985).Google Scholar
28 Chemla, D.S. and Zyss, J., Eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 2 (Academic Press, Orlando, FL, 1987).Google Scholar
29 Prasad, P.N. and Williams, D.J., Introduction to Nonlinear Optical Effects in Molecules and Polymers (John Wiley and Sons, Inc.: NY, 1991), p. 232.Google Scholar
30 Carter, G.M., Thakur, M.K., Chen, Y.J., and Hryniewicz, J.V., Appl. Phys. Lett., 47, 457 (1985).Google Scholar
31 Hermann, J.P. and Smith, P.W., Digest of Technical Papers—11th International Quantum Electronics Conference, 656 (1980).Google Scholar
32 Paley, M.S., Frazier, D.O., McManus, S.P., Donovan, D.N., U.S. Patent No. 5,451,433 (September 19, 1995).Google Scholar
33 Paley, M.S., Frazier, D.O., Abdeldeyem, H.A., Armstrong, S., and McManus, S.R., J. Am. Chem. Soc., 117(17), 4775 (1995).Google Scholar
34 Pearson, E., Witherow, W.K., and Penn, B.G. (private communication).Google Scholar
35 Thakur, M. and Krol, D.M., Appl. Phys. Lett., 56(13), 1213 (1990).Google Scholar
36 Samoc, M., The Australian National University, Laser Physics Centre (private communication).Google Scholar
37 Stegeman, G.I. and Torruellas, W. in Electrical, Optical, and Magnetic Pmoperties of Organic Solid State Materials, edited by Garito, A.F., Jen, A.K., Lee, C.Y-C., Dalton, L. (MRS Symposium Proceedings, Materials Research Society, Pittsburg, PA, 1994) p. 397.Google Scholar
38 Walter, H.U., Ed., Fluid Sciences and Materials in Space ESA (Springer-Verlag, NY, 1987).Google Scholar
39 Antar, B. and Nuotio-Antar, V.S., Fundamentals of Low-Gravity Fluid Dywamics and Heat Transfer (CRC Press, 1994).Google Scholar
40 Frazier, D.O., Hung, R.J., Paley, M.S., and Long, Y.T., J. Crys. Growth (unpublished).Google Scholar
41 Antar, B.N., Phys. Fluids, 30(2), 322 (1987).Google Scholar
42 Garnett, J.C. Maxwell, Philosophical Transactions of the Royal Society of London, 203, 385 (1904), 205, 237 (1906).Google Scholar
43 Ricard, D., Rousignol, P., and Flytzanis, C., Opt. Lett., 10, 511 (1985).Google Scholar
44 Sipe, J.W. and Boyd, R.W., Phys. Rev., A 46, 1614 (1992).Google Scholar
45 Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., and Whyman, R., J. Chem. Soc. Chem. Commun., 801 (1994).Google Scholar
46 Paley, M.S., Armstrong, S., Witherow, W.K., and Frazier, D.O., Chem. Mater., 8(4), 912 (1996).Google Scholar
47 Paley, M.S., Frazier, D.O., Abdeldeyem, H.A., and McManus, S.P., Chem. Mater., 6(12), 2213 (1994).Google Scholar
48 Tsiboulkis, J., Werninck, A.R., Shand, A.J., and Milburn, G.H.W., Liquid Crystals, 3(10), 1393 (1988).Google Scholar
49 Kim, T., Crooks, R.M., Tsen, M., and Sun, L., J. Am. Chem. Soc., 117, 3963 (1995).Google Scholar
50 Cheong, D.W., Kim, W.H., Samuelson, L.A., Kumar, J., and Tripathy, S.K., Macromolecules, 29, 1416 (1996).Google Scholar
51 Kim, W.H., Bihari, B., Moody, R., Kodali, N.B., Kumar, J., and Tripathy, S.K., Macromolecules, 28, 642 (1995),Google Scholar
52 Muller, H., Nuyken, O., Strtohriegl, P., Makromol. Chem. (Rapid Cornmun. 1992), 125.Google Scholar
53 Sandman, D.J., Ed., Solid State Polymerization (American Chemical Society, Washington, DC, 1987).Google Scholar
54 Frazier, D.O., Hung, R.J., Paley, M.S., Penn, B.G., and Long, Y.T., J. Crys. Growth, 171, 288 (1997).Google Scholar
55 Markham, B.L., Greenwell, D.W., and Rosenberger, F., J. Cryst. Growth, 51, 426 (1981).Google Scholar
56 Ho, Z.Z., Ju, C.Y., and Hetherington, W.M. III, J. AppI. Phys., 62, 716 (1987).Google Scholar
57 Shirk, J.S., Lindle, J.R., Bartoli, F.J., Hoffman, C.A., Kafafi, Z.H., and Snow, A.W., Appl. Phys. Lett., 55, 1287 (1989).Google Scholar
58 Wu, J.W., Heflin, J.R., Norwood, R.A., Wong, K.Y., Zamani-Khamiri, O., Garito, A.F., Kalyanaraman, F., and Sounik, J., J. Opt. Soc. Am., B, 6(4), 707 (1989).Google Scholar
59 Matsuda, M., Okada, S., Masaki, A., Nakanishi, H., Suda, Y., Shigehara, K., and Yamada, Y., Proc. SPIE, 1337, 105 (1990).Google Scholar
60 Hosoda, M., Wada, T., Yamada, A., Garito, A.F., and Sasabe, H., Jpn. J. Appl. Phys., 30, L1486 (1991).Google Scholar
61 Hoshi, H., Nakamura, N., and Maruyama, Y., J. Appl. Phys., 70, 7244 (1991).Google Scholar
62 Suda, Y., Shiegehara, K., Yamada, A., Matsuda, H., Okada, S., Masaki, A., and Nakanishi, H., SPIE, 1560, 75 (1991).Google Scholar
63 Casstevens, M.K., Samoc, M., Pfleger, J., and Prasad, R.N., J. Chem. Phys., 92, 2019 (1990).Google Scholar
64 Prasad, P.N. and Williams, D.J., Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley Interscience, NY, 1991), p. 205.Google Scholar
65, Reeves, R.J., Powell, R.C., Chang, Y.H., Ford, W.T., and Zhu, W., Opt. Mater., 5, 43 (1996).Google Scholar
66 Dorsinville, R., Yang, L., Alfano, R.R., Zamboni, R., Danieli, R., Ruani, G., and Taliani, C., Opt. Lett., 14(23), 1321 (1989).Google Scholar
67 Ho, Z.Z. and Peyghambarian, N., Chem. Phys. Lett., 148, 107 (1988).Google Scholar
68 Williams, V.S., Mazumdar, S., Armstrong, N.R., Ho, Z.Z., and Peyghambarian, N., J. Phys. Chem., 96, 4500 (1992).Google Scholar
69 Wada, T., Yamanda, S., Matsuoka, Y., Grossmn, C.H., Shigehara, K., Sasbe, H., Yamada, A., and Garito, A.F., Nonlinear Optics of Organics and Semiconductors (T. Kobayashi, Springer Berlin, 1989), p. 292.Google Scholar
70 Hosada, M., Wada, T., Yamada, A., Garito, A., and Sasabe, H., Jpn. J. Appl. Phys., 30(8B), L1486 (1991).Google Scholar
71 Chollet, P.A., Kajzar, F., and LeMoigne, J., SPIE, 1273, 87 (1990).Google Scholar
72 Kumagai, K., Mitzutani, G., Tsukioka, H., Yamauchi, T., and Ushioda, S., Phys. Rev. B, 48(19), 14488 (1993).Google Scholar
73 Yamada, T., Hoshi, H., Ishikawa, K., Takezoe, H., and Fukuda, A., Jpn. J. Appl. Phys., 34, L299 (1995).Google Scholar
74 Debe, M.K., and Kam, K.K., Thin Solid Films, 186, 289 (1990).Google Scholar
75 Debe, M.K. and Poirier, R.J., Thin Solid Films, 186, 327 (1990).Google Scholar
76 Debe, M.K., J. Vc. Sci. Technol., A4(3), 273 (1986).Google Scholar
77 Abdeldayem, H., Frazier, D.O., Penn, B.G., Witherow, W.K., Banks, C., Smith, D.D., and Sunkara, H., Opt. Comm., in press.Google Scholar
78 Antipin, M.Y., Timofeeva, T.V., Clark, R.D., Nesterov, V.N., Sanghadasa, M., Barr, T.A., Penn, B., Romero, L., and Romero, M., J. Phys. Chem. A, 102, 7222 (1998).Google Scholar
79 Wada, T., Grossman, G.H., Yamada, S., Yamada, A., Garito, A.F., Sasabe, H., Mater. Res Soc. Symp. Proc., 173, 519 (1990).Google Scholar
80 Antipin, M. Yu, Barr, T.A., Cardelino, B., Clark, R.D., Moore, C.E., Myers, T., Penn, B., Romero, M., Sanhadasa, M., Timofeeva, T.V., J. Phys. Chem., 101, 2770 (1997).Google Scholar
81 Zugrav, M.I., Carswell, W.E., Lundquist, C.E., Wessling, E.C., Leslie, T.M., Materials Research in Low Gravity (SPIE Proceedings, 3123, San Diego, California, 28-29 July 1997) p. 110.Google Scholar