Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T03:03:17.311Z Has data issue: false hasContentIssue false

Effects of Deposition Temperature and Film Thickness on the Structural, Electrical, and Optical Properties of Germanium Thin Films

Published online by Cambridge University Press:  01 February 2011

William B. Jordan
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Sigurd Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

Germanium films deposited on glass by plasma-enhanced chemical vapor deposition from germane and hydrogen grow in the structure succession of amorphous-nanocrystallineamorphous-nanocrystalline as the substrate temperature is raised from 30°C to 310°C. We ascribe the phase formation, from low to high temperature, to a sequence of low to high mobility of Ge growth species on a surface that is hydrogenated at low temperature but not hydrogenated at high temperature. We report some structural, optical, and electrical transport properties of Ge films as a function of deposition temperature and film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krause, M., Stiebig, H, Carius, R., Wagner, H., Mat. Res. Soc. Symp. Proc. 664, A26.5 (2001).Google Scholar
2. Karg, F.H., Böhm, H. and Pierz, K., J. Non-Cryst. Solids 114, 477 (1989).Google Scholar
3. Paul, W., Jones, S.J., Marques, F.C., Pang, D., Turner, W.A., Wetsel, A.E., Wickboldt, P., and Chen, J., Mat. Res. Soc. Symp. Proc. 219, 211 (1991).10.1557/PROC-219-211Google Scholar
4. Stewart, A.D., Jones, D.I., Willeke, G., Phil. Mag. B 48, 333 (1983).Google Scholar
5. Gonzalez-Hernandez, J., Azarbayejani, G.H., Tsu, R., Pollak, F.H., Appl. Phys. Lett. 47, 1350 (1985).Google Scholar
6. Drevillon, B., Godet, C., Antoine, A.M., Mat. Res. Soc. Symp. Proc. 75, 341 (1986).Google Scholar
7. Woodyard, J.R., Gonzalez-Hernandez, J., Young, R.T., Piontkowski, J., Mat. Res. Soc. Symp. Proc. 70, 65 (1986).10.1557/PROC-70-65Google Scholar
8. Godet, C., Drevillon, B., Senemaud, C., J. Non-Cryst. Solids 97, 431 (1987).Google Scholar
9. Drevillon, B., Godet, C., J. Appl. Phys. 64, 145 (1988).Google Scholar
10. Godet, C., Rocai Cabarrocas, P., Gujrathi, S.C., Burret, P.A., J. Vac. Sci. Technol. A 10, 3517 (1992).10.1116/1.577811Google Scholar
11. Aoki, T., Nishikawa, Y., Fukasawa, K., Sheng, W.Q., Hirose, M., J. Non-Cryst. Solids 164-166, 91 (1993).Google Scholar
12. Poulsen, P.R., Wang, M., Xu, J., Li, W., Chen, K., Wang, G., and Feng, D., J. Appl. Phys. 84, 3386 (1998).Google Scholar
13. Jiang, J., Chen, K., Feng, D., and Sun, D., Thin Solid Films 230, 7 (1993).Google Scholar
14. Cabarrocas, P. Rocai, Layadi, N., Heitz, T., Drevillon, B. and Solomon, I., Appl. Phys. Lett. 66, 3609 (1995).Google Scholar
15. Koh, Joohyun, Ferlauto, A. S., Rovira, P. I., Wronski, C.R. and Collins, R.W., Appl. Phys. Lett. 75, 2286 (1999).Google Scholar
16. Matsuda, A., J. Non-Cryst. Solids 59-60, 767 (1983).Google Scholar
17. Okada, Y., Chen, J., Campbell, I.H., Fauchet, P.M. and Wagner, S., Mat. Res. Soc. Symp. Proc. 149, 93 (1989).Google Scholar
18. Vallat-Sauvain, E., Kroll, U., Meier, J., Shah, A., Pohl, J., J. Appl. Phys. 87, 3137 (2000).Google Scholar
19. Koèka, J., Stuchlíková, H., Stuchl, J.ík, Rezek, B., Ŝvrèek, V., Fojtík, P., Pelant, I. and Fejfar, A., in Polycrystalline Semiconductors VI, Solid State Phenomena 80-81, 213 (2000). edited by O. Bonnaud, T. Mohammed-Brahim, H. P. Strunk, and J. H. Werner (Scitec Publications, Switzerland 2001).; J. Koèka, A. Fejfar, V. Vorlicek, H. Stuchlíková, and J. Stuchlík, Mater. Res. Soc. Symp. Proc. 557, 483 (1999).Google Scholar
20. Hazra, S., Sakata, I., Yamanaka, M. and Suzuki, E., Appl. Phys. Lett. 80, 1159 (2002)Google Scholar
21. Yu, P.Y., Cardona, M., Fundamentals of Semiconductors, Springer-Verlag, 1996. pp. 375392.Google Scholar
22. Palik, E.D., ed., Handbook of Optical Constants of Solids. Academic Press, 1985. pp. 472473.Google Scholar
23.Evans East, East Windsor, New Jersey.Google Scholar
24. Toyoshima, Y., Matsuda, A., and Arai, K., J. Non-Cryst. Solids 198-200, 1042 (1996).Google Scholar
25. Beyer, W., Herion, J., Wagner, H., and Zastrow, U., Mat. Res. Soc. Symp. Proc. 192, 689 (1990).Google Scholar
26. Beyer, W., Herion, J., Wagner, H., and Zastrow, U., Mat. Res. Soc. Symp. Proc. 219, 81 (1991).Google Scholar
27. Beyer, W., J. Non-Cryst. Solids 198-200, 40 (1996).Google Scholar
28. Rinnert, H., Vergnat, M., Marchal, G., and Burneau, A., Appl. Surf. Sci. 119, 224 (1997).Google Scholar
29. Surnev, L. and Tikhov, M., Surf. Sci 138, 40 (1984)10.1016/0039-6028(84)90494-1Google Scholar
30. Cohen, S.M., Hukka, T.I., Yang, Y.L., and D'Evelyn, M.P., Thin Solid Films 225, 155 (1993).Google Scholar
31. Ning, B.M.H. and Crowell, J.E., Surf. Sci. 295, 79 (1993).Google Scholar
32. Russell, N.M. and Ekerdt, J.G., Surf. Sci. 369, 51 (1996).Google Scholar