Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T10:14:20.825Z Has data issue: false hasContentIssue false

Effects of Contact Materials on the Thermally Stimulated Current Spectra of Mercuric Iodide

Published online by Cambridge University Press:  25 February 2011

X. J. Bao
Affiliation:
Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, PA 15213
T. E. Schlesinger
Affiliation:
Carnegie Mellon University, Department of Electrical and Computer Engineering, Pittsburgh, PA 15213
R. B. James
Affiliation:
Sandia National Laboratories, Advanced Materials Division, Livermore, CA 94450
A. Y. Cheng
Affiliation:
EG&G Energy Measurements, Inc., Goleta, CA 93116
C. Ortale
Affiliation:
EG&G Energy Measurements, Inc., Goleta, CA 93116
L. Van Den Berg
Affiliation:
EG&G Energy Measurements, Inc., Goleta, CA 93116
Get access

Abstract

Mercuric iodide (HgI2) single crystals deposited with transparent indium-tin-oxide (ITO), and semitransparent gold and nickel contacts were investigated by thermally stimulated current spectroscopy (TSC). The differences in the TSC spectra from these samples indicate that the defect structure in HgI2 may be modified by the contact material. These defects act as carrier traps and have strong implications in the application of HgI2 nuclear detectors. A method of numerical analysis was developed to extract information such as carrier trap activation energy, capture cross-section, and trap concentration-lifetime product from the TSC measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See articles in Nucl. Instr. Meth. Phys. Res. A283 (1989).Google Scholar
2. Dabrowski, A. J., Szymczyki, W. M., Iwanczyk, J. S., Kusmiss, J. H., Drummond, W., and Ames, L., Nucl. Instr. Meth. 213, 89 (1983).CrossRefGoogle Scholar
3. Skinner, N. L., Ortale, C., Schieber, M. M., and van den Berg, L., Nucl. Instr. Meth. Phys. Res. A 283. 119(1989).CrossRefGoogle Scholar
4. Bao, X. J., Schlesinger, M. M., James, R. B., Stulen, R. H., Ortale, C., and Cheng, A. Y., J. Appl. Phys. 68, 86 (1990).CrossRefGoogle Scholar
5. James, R. B., Bao, X. J., Schlesinger, T. E., Ortale, C., and Cheng, A. Y., J. Appl. Phys. 62, 2571 (1990).CrossRefGoogle Scholar
6. Bao, X. J., Schlesinger, T. E., James, R. B., Gentry, G. L., Cheng, A. Y., and Ortale, J., J. Appl. Phys. 69, 4247 (1991).CrossRefGoogle Scholar
7. Milnes, A. G., Deep Impurities in Semiconductors, (Wiley, New York, 1973).Google Scholar
8. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes in C, (Cambridge University Press, New York, 1988).Google Scholar
9. Whited, R. C., and van den Berg, L., IEEE Trans. Nucl. Sci. NS-24, 156 (1977).CrossRefGoogle Scholar
10. Mohammed-Brahim, T., Phys. Stat. Sol. (a) 65, K1 (1981).CrossRefGoogle Scholar
11. Tadjine, A., Gosselin, D., Koebel, J. M., and Siffert, P., Mat. Res. Soc. Symp. Proc. 16, 217 (1983).CrossRefGoogle Scholar
12. Stuck, R., Muller, J. C., Ponpon, J. P., Scharager, C., Schwab, C., and Siffert, P., J. Appl. Phys. 47, 1549 (1976).CrossRefGoogle Scholar
13. Bao, X. J., Ph.D. Thesis (Dept. of ECE, Carnegie Mellon University, 1991).Google Scholar
14. Markakis, J., Ortale, C., Schnepple, W., Iwanczyk, J., and Dabrowski, A., IEEE Trans. Nucl. Sci. NS-32. 559(1985).CrossRefGoogle Scholar
15. James, R. B., Bao, X. J., Schlesinger, T. E., Markakis, J. M., Cheng, A. Y., and Ortale, C., J. Appl. Phys. 66, 2578 (1989).CrossRefGoogle Scholar
16. Howes, J., and Walting, J., Mat. Res. Symp. Proc. 16, 207 (1983).CrossRefGoogle Scholar
17. Merz, J. L., Wu, Z. L., van den Berg, L., and Schnepple, W. F., Nucl. Instr. Meth. 213, 51 (1983).CrossRefGoogle Scholar