Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T10:49:40.501Z Has data issue: false hasContentIssue false

Effects of Compositional Segregation and Short Channel on Threshold Voltage of nMOSFET

Published online by Cambridge University Press:  10 February 2011

Julie Y. H. Lee
Affiliation:
Motorola Inc., Semiconductor Product Sector, 5005 East McDowell Rd., Phoenix, AZ 85005
Tom C. H. Lee
Affiliation:
Motorola Inc., Semiconductor Product Sector, 5005 East McDowell Rd., Phoenix, AZ 85005
Mike Embry
Affiliation:
Motorola Inc., Semiconductor Product Sector, 5005 East McDowell Rd., Phoenix, AZ 85005
Keenan Evans
Affiliation:
Motorola Inc., Semiconductor Product Sector, 5005 East McDowell Rd., Phoenix, AZ 85005
Dan Koch
Affiliation:
Motorola Inc., Semiconductor Product Sector, 5005 East McDowell Rd., Phoenix, AZ 85005
Robert Tucker
Affiliation:
Motorola Inc., Semiconductor Product Sector, 5005 East McDowell Rd., Phoenix, AZ 85005
Get access

Abstract

This study calculates the threshold voltage (VT) roll-off behavior caused by short channel effect (SCE) as a result of scaling and the reverse short-channel effect (RSCE) due to B segregation around source and drain junctions by using the 2D device simulator - SILVACO-ATLAS. The simulation results are comparable with the experimental data. It suggests that the drift diffusion physics can predict SCE and RSCE very well to sub-0.25μ Si n-MOSFET devices. The modeling results indicate the VT roll off at shorter channel length for devices with higher substrate doping concentration. VT increases if the local p-dopant segregation exists around the source and drain junction. It is observed that RSCE is more significant for devices with lower substrate doping concentration and shorter channel length.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, C., Semiconductor International, p. 105 (1994).Google Scholar
2. Dennard, R. H. et al., IEEE J. Solid-State Circuits, Vol. SC-9, p. 256 (1974).Google Scholar
3. Chung, J. E., Jeng, M. C., Moon, J. E., Ko, P. K., and Hu, C., IEEE Trans. Elee. Dev., ED38, p. 545 (1991).Google Scholar
4. Troutman, R. R., IEEE Trans. Electron Dev., ED-26, p. 461 (1979).Google Scholar
5. Lee, H. S., Solid State Electronics, Vol. 16, p. 1407 (1973).Google Scholar
6. Akers, L. A. et al, Solid State Electronics, Vol. 25, p. 621 (1982).Google Scholar
7. Liu, Z. H. et al., IEEE Trans. Electron Dev., p. 86 (1993).Google Scholar
8. Greenfield, J. and Dutton, R., IEEE Trans. Electron Dev., ED-27, p. 1520 (1980).Google Scholar
9. Wang, T. et al., IEEE Trans. Electron Dev., ED-41, p. 2475 (1994).Google Scholar
10. Parke, S., Moon, J., Lee, P., Huang, J., Hu, C., and Ko, P. K., IEEE Trans. Elee. Dev., ED39, p. 1 (1992).Google Scholar
11. Troutman, R. R., Latchup in CMOS Technology, Kluwer Academic Publishers, 1986.Google Scholar
12. Tsukamoto, K., Kuroi, T., Komori, S., and Aksaka, Y., Nucl. Instrum. Methods, B59/60, p. 584 (1991).Google Scholar
13. Komori, S., Akasaka, Y., Solid State Technol. 35(6), p. 49 (1992).Google Scholar
14. Kirk, P. and Ray, S., IEEE Electron Device Lett. 15, p. 163 (1994).Google Scholar
15. Ogura, S. et al., IEEE Trans. Electron Dev., ED-27, p. 1359 (1980).Google Scholar
16. Tsang, P. J. et al., IEEE Trans. Electron Dev., ED-29, p. 590 (1982).Google Scholar
17. Sadana, D. K. et al, Proc IEDM 92, p. 849 (1992).Google Scholar
18. Nishida, M. et al, IEEE Trans. Electron Dev., ED-28, p. 1101 (1981).Google Scholar
19. Lu, C. Y., IEEE Electron Dev. Let., EDL-10, p. 446 (1989).Google Scholar
20. Arora, N. D. and Sharma, M. S., IEEE Trans. Electron Dev. Lett., EDL-13, p. 92 (1992).Google Scholar
21. Hanafi, H. et al., IEEE Trans. Electron Dev. Lett., EDL-14, p. 575 (1993).Google Scholar
22. Jacobs, H. et al., IEDM Tech. Dig. 1993, p. 307.Google Scholar
23. Rafferty, C. S. et al., IEDM Tech. Dig. 1993, p. 311.Google Scholar