Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-20T19:21:09.340Z Has data issue: false hasContentIssue false

Effects of Cesium, Iodine and Strontium Ion Implantation on the Microstructure of Cubic Zirconia

Published online by Cambridge University Press:  21 March 2011

L.M. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA,Email: lmwang@umich.edu
S. Zhu
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA,Email: lmwang@umich.edu
S.X. Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA,Email: lmwang@umich.edu
R.C. Ewing
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA,Email: lmwang@umich.edu
Get access

Abstract

Cesium, iodine and strontium ions have been implanted into yttria-stabilized cubic zirconia (YSZ) to determine the effects of fission product incorporation in YSZ that is considered as an inert nuclear fuel matrix. The ion implantation was conducted at room temperature to 1 × 1021ions/m2 for each ion with ion energies ranging from 70 to 400 keV. The peak displacement damage level and the peak ion concentration in YSZ reached 205-330 dpa and 11-26 at%, respectively. The microstructure of the implanted YSZ was studied by in situ and cross-sectional transmission electron microscopy. In the iodine and strontium implanted samples, a damaged layer with a high density of defect clusters was observed, while in the cesium implanted specimen, the damaged layer is amorphous. Nanocrystalline precipitates were observed in the strontium implanted specimen after annealing at 1000°C. The results are discussedin terms of the ionic size, mobility and the solubility of the implanted species in YSZ.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1. Sickafus, K.E., et al., Ceram. Bull. 78 (1999) 69.Google Scholar
2. , Degueldre and Paratte, J.-M., Nucl. Tech. 123 (1998) 21.Google Scholar
3. Oversby, V.M., McPheeters, C.C., Degueldre, C. and Paratte, J.M., J. Nucl. Mater. 245 (1997) 17.Google Scholar
4. Heimann, R.B. and Vandergraaf, T.T., J. Mater. Sci. Lett. 7 (1988) 583.Google Scholar
5. Gong, W.L., Lutze, W. and Ewing, R.C., J. Nucl. Mater. 277 (2000) 239.Google Scholar
6. Lumpkin, G.R., J. Nucl. Mater. 274 (1999) 206.Google Scholar
7. Sickafus, K.E., Matzke, Hj., Hartmann, T., Yasuda, K., Valdez, J.A., Chodak, P., III, Nastasi, M. and Verrall, R.A., J. Nucl. Mater. 274 (1999) 66.Google Scholar
8. , Degueldre, Pouchon, M., Doebli, M. and Ledergerber, G., inMicrostructural Processes in Irradiated Materials (Zinkle, S.J. et al. eds.,Pittsburgh, PA, 1999), Mater. Res. Soc. Symp. Proc. 540 (1999) 337.Google Scholar
9. Chevarier, N., Brossard, F., Chevarier, A., Crusset, D. and Moncoffre, N., Nucl. Instr. Meth. B 141 (1998) 487.Google Scholar
10. Sickafus, K.E. et al., Nucl. Instr. Meth.B 141 (1998) 358.Google Scholar
11. Pouchon, M. A., Döbeli, M. M. and Degueldre, C., Nucl. Instr. Meth. B 148 (1999) 783.Google Scholar
12. Allen, C.W. and Ryan, E.A., Microscopy Res. Tech. 42 (1998) 255.Google Scholar
13. Ziegler, J.F., The Stopping and Range of Ions in Matter (http://www.research.ibm.com/ionbeams/SRIM, IBM-Research, York Town, NY, 1999).Google Scholar
14.L.M. Wang, S.X. Wang and S. Zhu, Nucl. Instr. Meth. B, to be submitted.Google Scholar
15. Sekkina, M.M.A. and El-Halim, T.M.A., Thermochimica Acta. 113 (1987) 185.Google Scholar
16. Baufeld, B., Baither, D., Messerschmidt, U., M. Bartsch and I. Merkel, J. Am. Ceram. Soc. 76 (1993) 3163.Google Scholar
17. Inui, H., Mori, H. and Futita, H., Acta. Metall. 37 (1989) 1337.Google Scholar
18. Wittels, M.C., Stiegler, J.O. and Sherrill, F.A., Reactor Sci. Technol. 16 (1962) 237.Google Scholar
19. Fleisher, E.L., J. Mater. Res. 9 (1991) 1905.Google Scholar
20. Yu, N., Sickafus, K., Kodali, P. and Nastasi, M., J. Nucl. Mater. 244 (1997) 266.Google Scholar
21. Sasajima, N., Matsui, T., Hojou, K., Furuno, S., Otsu, H., Izui, K. and Muromura, T., Nucl. Instr. Meth.B 141, (1998) 487.Google Scholar
22. Naguib, H.M. and Kelly, R., Rad. Effects 25, 1 (1975).Google Scholar
23. Valdez, J.A., Wetteland, C.J., Hartmann, T., Shreve, A.P., Dyer, R.B., Foltyn, S.R. and Sickafus, K.E., Nucl. Instr. Meth., submitted.Google Scholar
24. Wang, L.M., Wang, S.X. and Ewing, R.C., Meldrum, A., Birtcher, C., Provencio, P. Newcomer, Weber, W.J., Matzke, Hj., Mater. Sci. Eng. A 286 (2000) 72.Google Scholar
25. Pouchon, M.A., Döbeli, M., Degueldre, C. and Burghartz, M., J. Nucl. Mater. 274 (1999) 61.Google Scholar
26. Zinkle, S.J. and Snead, L.L., Nucl. Instr. Meth. B 116 (1996) 92.Google Scholar
27. Zinkle, S.J., Snead, L.L., Eatherly, W.S., Jones, J.W. andHensley, D.K., in Microstructural Processes in Irradiated Materials (Zinkle, S.J. et al. eds., Pittsburgh, PA, 1999), Mater. Res. Soc. Symp. Proc. 540 (1999)305.Google Scholar
28. Li, F., Lu, P., Sickafus, K.E., Evans, C.R., Nastasi, M., in Microstructural Processes in Irradiated Materials (Zinkle, S.J. et al. eds., Pittsburgh, PA, 1999), Mater. Res. Soc. Symp. Proc. 540 (1999) 311.Google Scholar
29. Aoki, K., Li, X.G. and Masumoto, T., Acta. Metall. Mater. 40 (1992) 1717.Google Scholar
30. Bloss, F.D., Crystallography and Crystal Chemistry (Mineralogical Society of America, Washington, D.C. 1994).Google Scholar
31. Weber, W.J., et al., J. Mater. Res. 13 (1998) 1434.Google Scholar