Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T06:30:10.486Z Has data issue: false hasContentIssue false

The Effects of Atmosphere, Temperature, and Bandgap on the Annealing of GaInNAs for Solar Cell Applications

Published online by Cambridge University Press:  01 February 2011

A. J. Ptak
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory Golden, CO 80401, U.S.A.
Sarah Kurtz
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory Golden, CO 80401, U.S.A.
M. Young
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory Golden, CO 80401, U.S.A.
C. Kramer
Affiliation:
National Center for Photovoltaics, National Renewable Energy Laboratory Golden, CO 80401, U.S.A.
Get access

Abstract

The effects of thermal annealing on the minority-carrier diffusion lengths and depletion widths of GaInNAs are studied. We find that diffusion lengths in as-grown, Be- and Si-doped GaInNAs are limited to less than about 0.2 μm for samples with low concentrations of nitrogen. For higher concentrations of nitrogen, the diffusion lengths are not measurable. Annealing under a variety of temperatures and atmospheres typically makes the diffusion lengths even shorter. These short diffusion lengths are not yet long enough for GaInNAs to be useful in a next-generation, four-junction structure. Using undoped GaInNAs in a p–i–n structure is a promising approach to increase device performance. Currently, however, the depletion widths are too small at the bandgaps necessary for solar cells, and annealing does not appear to improve them.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fischer, M., Gollub, D., and Forchel, A., Jpn J Appl Phys Pt 1 41, 1162 (2002).10.1143/JJAP.41.1162Google Scholar
2. Chang, P. C., Baca, A. G., Li, N. Y., Sharps, P. R., Hou, H. Q., Laroche, J. R., and Ren, F., Appl Phys Lett 76, 2788 (2000).10.1063/1.126476Google Scholar
3. Friedman, D. J., Geisz, J. F., Kurtz, S. R., and Olson, J. M., J Cryst Growth 195, 409 (1998).10.1016/S0022-0248(98)00561-2Google Scholar
4. Thinh, N. Q., Buyanova, I. A., Chen, W. M., Xin, H. P., and Tu, C. W., Appl Phys Lett 79, 3089 (2001).10.1063/1.1416155Google Scholar
5. Thinh, N. Q., Buyanova, I. A., Hai, P. N., Chen, W. M., Xin, H. P., and Tu, C. W., Phys Rev B 63, p. 033203/1 (2001).10.1103/PhysRevB.63.033203Google Scholar
6. Spruytte, S. G., Coldren, C. W., Harris, J. S., Wampler, W., Krispin, P., Ploog, K., and Larson, M. C., J Appl Phys 89, 4401 (2001).10.1063/1.1352675Google Scholar
7. Li, W., Pessa, M., Ahlgren, T., and Decker, J., Appl Phys Lett 79, 1094 (2001).10.1063/1.1396316Google Scholar
8. Ahlgren, T., Vainonen, E., Likonen, J., Li, W., and Pessa, M., Appl Phys Lett 80, 2314 (2002).10.1063/1.1465522Google Scholar
9. Toivonen, J., Hakkarainen, T., Sopanen, M., Lipsanen, H., Oila, J., and Saarinen, K., Appl Phys Lett 82, 40 (2003).10.1063/1.1533843Google Scholar
10. Ptak, A. J., Kurtz, S., Weber, M. H., and Lynn, K. G., J Vac Sci Technol B (2003).Google Scholar
11. Buyanova, I. A., Pozina, G., Hai, P. N., Thinh, N. Q., Bergman, J. P., Chen, W. M., Xin, H. P., and Tu, C. W., Appl Phys Lett 77, 2325 (2000).10.1063/1.1315632Google Scholar
12. Kitatani, T., Nakahara, K., Kondow, M., Uomi, K., and Tanaka, T., J Cryst Growth 209, 345 (2000).10.1016/S0022-0248(99)00568-0Google Scholar
13. Li, L. H., Pan, Z., Zhang, W., Lin, Y. W., Zhou, Z. Q., and Wu, R. H., J Appl Phys 87, 245 (2000).10.1063/1.371852Google Scholar
14. Xin, H. P., Tu, C. W., and Geva, M., Appl Phys Lett 75, 1416 (1999).10.1063/1.124711Google Scholar
15. Potter, R., Mazzucato, S., Balkan, N., Adams, M. J., Chalker, P. R., Joyce, T. B., and Bullough, T. J., Superlattice Microstruct 29, 169 (2001).10.1006/spmi.2000.0967Google Scholar
16. Grenouillet, L., BruChevallier, C., Guillot, G., Gilet, P., Ballet, P., Duvaut, P., Rolland, G., and Million, A., J Appl Phys 91, 5902 (2002).10.1063/1.1467957Google Scholar
17. Kageyama, T., Miyamoto, T., Makino, S., Koyama, F., and Iga, K., Japanese Journal of Applied Physics 38, L298 (1999).10.1143/JJAP.38.L298Google Scholar
18. Tanaka, S., Moto, A., Takahashi, M., Tanabe, T., and Takagishi, S., J Cryst Growth 221, 467 (2000).10.1016/S0022-0248(00)00746-6Google Scholar
19. Geisz, J. F., Friedman, D. J., Olson, J. M., Kurtz, S. R., and Keyes, B. M., J Cryst Growth 195, 401 (1998).10.1016/S0022-0248(98)00563-6Google Scholar
20. Xin, H. P., Tu, C. W., and Geva, M., J Vac Sci Technol B 18, 1476 (2000).10.1116/1.591407Google Scholar
21. Kurtz, S., Geisz, J. F., Friedman, D. J., Olson, J. M., Duda, A., Karam, N. H., King, R. R., Ermer, J. H., and Joslin, D. E., in 28th IEEE Photovoltaic Specialists Conference; Vol. 28th (IEEE, New York, Anchorage, Alaska, 2000), p. 1210.Google Scholar
22. Kurtz, S., Geisz, J. F., Friedman, D. J., Metzger, W. K., King, R. R., and Karam, N. H., J Appl Phys (submitted).Google Scholar
23. Kurtz, S. R. and Olson, J. M., in 19th IEEE Photovoltaic Specialists Conference (IEEE, New York, New Orleans, Louisiana, 1987), p. 823.Google Scholar
24. Kurtz, S. R., Allerman, A. A., Jones, E. D., Gee, J. M., Banas, J. J., and Hammons, B. E., Appl Phys Lett 74, 729 (1999).10.1063/1.123105Google Scholar
25. Aspnes, D.E. in Properties of Gallium Arsenide, (INSPEC, London and New York, 1990) p. 157.Google Scholar
26. Keyes, B. M., Geisz, J. F., Dippo, P. C., Reedy, R., Kramer, C., Friedman, D. J., Kurtz, S. R., and Olson, J. M., AIP Conf Proc 462, 511 (1999).10.1063/1.57997Google Scholar
27. Ptak, A. J., Johnston, S. W., Kurtz, S., Friedman, D. J., and Metzger, W. K., J Cryst Growth 251, 392 (2003).10.1016/S0022-0248(02)02201-7Google Scholar
28. Friedman, D.J., private communication.Google Scholar