Skip to main content Accessibility help
×
Home

Effects of Antimony on the Thermoelectric Properties of the Cubic Pb9.6SbyTe10−xSex Materials

  • Pierre Ferdinand Poudeu Poudeu (a1), Jonathan D'Angelo (a2), Adam Downey (a3), Robert Pcionek (a4), Joseph Sootsman (a5), Zhenhua Zhou (a6), Oleg Palchik (a7), Timothy P. Hogan (a8), Ctirad Uher (a9) and Mercouri G. Kanatzidis (a10)...

Abstract

The thermoelectric properties of Pb9.6SbyTe10−xSex were investigated in the intermediate temperature range of 300 – 700 K. The effect of the variation of Sb content (y) on the electronic properties of the materials is remarkable. Samples with compositions Pb9.6Sb0.2Te10−xSex (y = 0.2) show the best combination of low thermal conductivity with moderate electrical conductivity and thermopower. For Pb9.6Sb0.2Te8Se2 (x = 2) a maximum figure of merit of ZT ∼ 1.1 was obtained around 700 K. This value is nearly 1.4 times higher than that of PbTe at 700 K. This enhancement of the figure of merit of Pb9.6Sb0.2Te8Se2 derives from its extremely low thermal conductivity (∼0.7 at W/m.K at 700 K). High resolution transmission electron microscopy of Pb9.6Sb0.2Te10−xSex samples shows broadly distributed Sb-rich nanocrystals, which may be the key feature responsible for the suppression of the thermal conductivity.

Copyright

References

Hide All
[1] Kanatzidis, M. G., Semicond. Semimet. 69, 51100 (2000).
[2] Venkatasubramanian, R., Colpitts, T., Watko, E., Lamvik, M. and El-Masry, N., J. Cryst. Growth. 170, 817821 (1997).
[3] Harman, T. C., Spears, D. L. and Manfra, M. J., J. Electron. Mater. 25, 11211127 (1996).
[4] Aigle, M., et al. Phys. Rev. B, 64, 35316 (2001).
[5] Harman, T. C., Spears, D. L. and Walsh, M. P., J. Electron. Mater. 28, L1–L4 (1999).
[6] Harman, T. C., Taylor, P. J., Spears, D. L. and Walsh, M. P., 18th International conference on Thermoelectrics, 280284 (1999).
[7] Harman, T. C., Taylor, P. J., Walsh, M. P. and LaForge, B. E., Science, 297, 22292232 (2002).
[8] Dashevsky, Z. M., Dariel, P., and Shusterman, S., Semiconductor Physic, Quantum Electronics and Optoelectronics, 3, 181184 (2000).
[9] Orihashi, M., Noda, Y., Chen, L.-D., Goto, T. and Hirai, T., J. Phys. Chem. Solids, 61, 919923 (2000).
[10] Loo, S., Short, J., Hsu, K. -F., Kanatzidis, M. G. and Hogan, T., Mat. Res. Soc. Symp. Proc. 793, S9.4.19 (2004).
[11] Harman, T. C., Taylor, P. J., Spears, D. L. and Walsh, M. P., J. Electron. Mater. Lett. 29, L1–L4 (2000).
[12] Ioffe, A. F., Can. J. Phys. 34, 1342 (1956).
[13] Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K. and Kanatzidis, M. G., Science, 303, 818821 (2004).
[14] (a) Khitun, A., Wang, K. L. and Chen, G., Nanotechnology, 11 (4), 327331 (2000);
(b) Quarez, E., et al. J. Am. Chem. Soc. 127, 91779190 (2005).

Keywords

Effects of Antimony on the Thermoelectric Properties of the Cubic Pb9.6SbyTe10−xSex Materials

  • Pierre Ferdinand Poudeu Poudeu (a1), Jonathan D'Angelo (a2), Adam Downey (a3), Robert Pcionek (a4), Joseph Sootsman (a5), Zhenhua Zhou (a6), Oleg Palchik (a7), Timothy P. Hogan (a8), Ctirad Uher (a9) and Mercouri G. Kanatzidis (a10)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed