Skip to main content Accessibility help
×
Home

Effect of the Microstructure on the Fatigue Strength of a TiAl Intermetallic Alloy Produced by Additive Manufacturing

  • M. Filippini (a1), S. Beretta (a1), C. Içöz (a1) and L. Patriarca (a1) (a2)

Abstract

In this work we examine a Ti-48Al-2Cr-2Nb alloy obtained with an additive manufacturing technique by Electron Beam Melting (EBM) by conducting monotonic and cyclic loading experiments both on tension and compression samples for investigating the influence of the microstructure in strain accumulation process by fatigue loading. The residual strain maps corresponding to different applied stress levels, number of cycles and microstructures are obtained through the use of high-resolution Digital Image Correlation (DIC). The strain maps were overlaid with the images of the microstructure and detailed analyses were performed to investigate the features of the microstructure where high local strain heterogeneities arise. Such experiments, conducted ex-situ at room temperature, allow to characterize the effect of different microstructures on the strain accumulation process, and to clearly identify the role of the microstructural features of this TiAl intermetallic alloy on the fatigue initiation process.

Copyright

References

Hide All
1. Chan, K. S., Shih, D. S., Metal. Mater. Trans. A 29, 7387 (1998).
2. Gloanec, A.-L., Henaff, G., Jouiad, M., Bertheau, D., Belaygue, P., Grange, M., Scripta Mat. 52, 107111, (2005).
3. Sutton, M. A., Orteu, J.-J., Schreier, H. W., Image Correlation for Shape, Motion and Deformation Measurements (Springer-Verlag, Heidelberg, 2009).
4. Andersson, L.-E., Larsson, M., Patent WO 2001/081031 A1 (27 April 2001).
5. Biamino, S., Penna, A., Ackelid, U., Sabbadini, S., Tassa, O., Fino, P., Pavese, M., Gennaro, P., Badini, C., Intermetallics 19, 776781 (2011).
6. Carroll, J., Abuzaid, W., Lambros, J., Sehitoglu, H., Rev. Sci. Instr. 81, 083703 (2010).
7. Baeslack, W. A. III, McQuay, P. A., Lee, D. S., Fletcher, E. D., Mat. Char. 31, 197207 (1993).
8. Zupan, M., Hemker, K. J., Acta Mater. 51, 62776290 (2003).
9. Filippini, M., Beretta, S., Patriarca, L., Pasquero, G., Sabbadini, S., Proc. Eng. 10, 36773682, (2011).
10. Appel, F., Paul, J. D. H., Oehring, M., Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 2011).
11. Bieler, T. R., Eisenlohr, P., Roters, F., Kumar, D., Mason, D. E., Crimp, M. A., Raabe, D., Int. J. Plast. 25 16551683, (2009).
12. Dahar, M. S., Seifi, S. M., Bewlay, B. P., Lewandowski, J. J, Intermetallics 57, 7382, (2015).

Keywords

Effect of the Microstructure on the Fatigue Strength of a TiAl Intermetallic Alloy Produced by Additive Manufacturing

  • M. Filippini (a1), S. Beretta (a1), C. Içöz (a1) and L. Patriarca (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed