Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T14:04:49.963Z Has data issue: false hasContentIssue false

The effect of the extra ion on residual damage in MeV implanted Si

Published online by Cambridge University Press:  15 February 2011

S. Libertino
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, 07974-N.J.
J. L. Benton
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, 07974-N.J.
S. Coffa
Affiliation:
CNR-IMETEM, Stradale Primosole 50, 95121 Catania, Italy
D. C. Jacobson
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, 07974-N.J.
D. J. Eaglesham
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Avenue, Murray Hill, 07974-N.J.
J. M. Poate
Affiliation:
New Jersey Institute of Technology, 504 Cullimore Hall, University Height Newark, N.J. 07102
M. Lavalle
Affiliation:
CNR-FRAE, Via P. Gobetti 101, 40129 Bologna, Italy
P. G. Fuochi
Affiliation:
CNR-FRAE, Via P. Gobetti 101, 40129 Bologna, Italy
Get access

Abstract

We have investigated the defect structure of ion-implanted and electron irradiated crystalline Si using deep level transient spectroscopy measurements to characterize both vacancy-(V) and interstitial- (I) type defects and to monitor their evolution upon annealing at temperatures ≤ 600 °C. It is found that only 4% of the Frenkel pairs generated by the energetic particles escape direct recombination and are stored into an equal number of room temperature stable V- and I-type defect complexes. No difference is found in the defect structure and annealing kinetics of ion implanted (1.2 MeV Si to fluences between 1×109 to 1010/cm2) and electron irradiated (9.2 MeV to fluences between 1 and 3×1015/cm2) samples in spite of the fact that denser collision cascades are produced by the ions. Annealing treatments result in a concomitant reduction in the concentration of I and V-type defects, demonstrating that defect recombination occurs preferentially in the bulk and not at the sample surface. Finally, at temperature above 300 °C, when most of the vacancy-type defects have been recombined, a residual concentration of I-type defects is found in ion implanted samples. This interstitial excess, not detected in electron irradiated samples, provides a direct evidence of the imbalance between I and V concentration produced by the extra incorporated ion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kimerling, L. C., in Radiation Effects in Semiconductors, edited by Urli, N. B. and Corbett, J. M. (Inst. of Phys. Conf. Ser. 31, London 1977), p. 221.Google Scholar
2 Asom, M. T., Benton, J. L., Sauer, R. and Kimerling, L. C., Appl. Phys. Lett. 51, 256 (1987).Google Scholar
3 Benton, J. L., Asom, M. T., Sauer, R. and Kimerling, L. C., Mat. Res. Soc. Symp. Proc. 104, 85 (1988).Google Scholar
4 Watkins, G. D. and Corbett, J. W., Phys. Rev. 121, 1001 (1961).Google Scholar
5 Svensson, B. G., Jagadish, C., Hallen, A. and Laiita, J., Nucl. Instr. Meth. B106, 183 (1995).Google Scholar
6 Lalita, J., Keskitalo, N., Hallèn, A., Jagadish, C. and Svensson, B. G., Nucl. Instr. Meth., in pressGoogle Scholar
7 Giles, M., J. Electr. Soc. 138, 1160 (1991).Google Scholar
8 Jaraiz, M., Gilmer, G. H., Poate, J. M., de la Rubia, T. D., Appl. Phys. Lett. 68, 409 (1996).Google Scholar
9 Watkins, G. D., Phys. Rev. B12, 5824 (1975).Google Scholar
10 Drevinski, P. J. and De Angelis, H. M., Thirteenth International Conference on Defects in Semiconductors, edited by Kimerling, L. C. and Parsey, J. M., (Warrendale, PA, 1984) p. 307.Google Scholar
11 Libertino, S., Benton, J. L., Jacobson, D. C., Eaglesham, D. J., Poate, J. M., Coffa, S., Fuochi, P. G., Lavalle, M., Appl. Phys. Lett, in press (2 June 1997 issue).Google Scholar
12 Kimerling, L. C., Inst. Phys. Conf. Ser. 31, 221 (1977).Google Scholar
13 Benton, J. L., Libertino, S., Kringhøi, P., Eaglesham, D. J., Poate, J. M., Coffa, S.,, J. Appl. Phys., in press (15 June 1997 issue)Google Scholar
14 Libertino, S., Benton, J. L., Jacobson, D. C., Eaglesham, D. J., Poate, J. M., Coffa, S., Fuochi, P. G., Lavalle, M., Appl. Phys. Lett, submitted for publication.Google Scholar
15 Biersack, J. P. and Haggmark, L. G., Nucl. Instr. Meth. 174, 257 (1980).Google Scholar