Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T23:41:33.542Z Has data issue: false hasContentIssue false

Effect of Temperature on Incubation Time for Spontaneous Morphology Change in Electrodeposited Copper Metallization

Published online by Cambridge University Press:  01 February 2011

S. Ahmed
Affiliation:
Dept. of Physics, Materials and Surface Science Institute, University of Limerick, Ireland
D.N. Buckley
Affiliation:
Dept. of Physics, Materials and Surface Science Institute, University of Limerick, Ireland
S. Nakahara
Affiliation:
Dept. of Physics, Materials and Surface Science Institute, University of Limerick, Ireland
Y. Kuo
Affiliation:
Dept. of Chemical Engineering, Texas A&M University, College Station, TX, USA
Get access

Abstract

A systematic investigation of the effect of annealing time and temperature on the incubation period for spontaneous morphology change (SMC) in electrodeposited copper metallization is reported. The incubation time is greatly reduced at higher temperatures. At each temperature, the remaining incubation time at room temperature was found to decrease approximately linearly with increasing annealing time. An Arhennius plot of the measured rates of decrease showed good linearity and yielded a value of 0.48 eV for the activation energy. This is consistent with a vacancy diffusion mechanism for the process occurring during the incubation period and supports our proposed mechanism for SMC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schmidt, W. U., Alkire, R. C. and Gewirth, A. A., J.Electrochem. Soc., 143, 3122 (1996)Google Scholar
2. Harper, J.M.E. and Rodbell, K.P., J. Vac. Sci. Technol. B15, 763 (1997)Google Scholar
3. Dietterle, M., Will, T. and Kolb, D. M., Surface Science, 396, 189 (1998)Google Scholar
4. Stafford, G.R., Vaudin, M.D., Moffat, T.P., Armstrong, N., Jovic, V.D. and Kelley, D.R., Electrochemical Soc. Proceedings, Vol. 99-34, p. 340 (1999)Google Scholar
5. Cerisier, M., Attenborough, K., Fransaer, J., Haesendonck, C. V. and Celis, J. P., J.Electrochem. Soc., 146, 2156 (1999)Google Scholar
6. B. Leung, T. Y., Kang, M., Corry, B. F. and Gewirth, A. A., J. Electrochem. Soc., 147, 3326 (2000).Google Scholar
7. Moffat, T. P., Bonevich, J. E., Huber, W. H., Stanishevsky, A., Kelly, D. R., Stafford, G. R. and Josell, D., J.Electrochem. Soc., 147, 4524 (2000).Google Scholar
8. Rasmussen, A. A., Jensen, J. A. D., Horsewell, A. and Somers, M. A. J., Electrochim. Acta, 47, 67 (2001)Google Scholar
9. Patten, J.W., McClanahan, E.D., and Johnston, J.W., J. Appl. Phys., 42, 4371 (1971)Google Scholar
10. Tomov, I.V., Stoychev, D.S., and Vitanova, I.B., J. Appl. Electrochem., 15, 887 (1985)Google Scholar
11. Stoychev, D.S., Tomov, I.V., and Vitanova, I.B., J.Appl. Electrochem. 15, 879 (1985)Google Scholar
12. Titzdorf, T., Craham, L., Jin, S., Mu, C. and Fraser, D., Proc. Int, Interconnect. Technol, Conf. p. 166 (1998)Google Scholar
13. Lingk, C. and Gross, M.E., J. Appl. Phys., 84, 5547 (1998)Google Scholar
14. Gross, M.E., Lingk, C., Siegrist, T., Coleman, E., Brown, W.L., Ueno, K., Tsuchiya, Y., Itoh, N., Ritzdorf, T., Turner, J., Gibbons, K., Klawuhn, E., Biberger, M., Lai, W.Y.C., Miner, J.F., Wu, G., and Zhang, F., Mat. Res. Soc. Symp. Proc. 514, 293 (1998)Google Scholar
15. Harper, J.M.E., Cabral, C. Jr, Andricacos, P.C., Gignac, L., Noyan, I.C., Rodbell, K.P., and Hu, C.K., J. Appl. Phys., 86, 2516, (1999)Google Scholar
16. Walther, D., Gross, M.E., Evans-Lutterodt, K, Brown, W.L., Oh, M., Merchant, S. and Naresh, P., Mat. Res. Symp. Proc., Vol. 612, p. D10.1.1. (2000)Google Scholar
17. Lagrange, S., Brongersma, S.H., Judeleiviez, M., Saerens, A., Vervoort, I, Richards, E., Palmans, B. and Marx, K., Microelectronic Engineering, 50, 449 (2000)Google Scholar
18. Teh, W.H., Koh, L.T., Chem, S.M., Xie, J., Li, C.Y. and Foo, P.D., Microelectronics Journal, 32, 579 (2001)Google Scholar
19. Buckley, D. N. and Ahmed, S., Electrochem. Solid State Lett., 6, C33–C37 (2003)Google Scholar
20. Ahmed, S. and Buckley, D.N. in Proceedings of the Symposium on Copper Interconnects, New Contact Metallurgies and Low-k Interlevel Dielectrics (The Electrochemical Society, Pennington, NJ, 2002).Google Scholar
21. Nichols, R. J., Bunge, E., Meyer, H. and Baumgärtel, H., Surface Science, 335, 110 (1995).Google Scholar
22. Cerisier, M., Haesendonck, C. V. and Celis, J. P., J.Electrochem. Soc., 146, 1829 (1999)Google Scholar
23. Ahmed, S. and Buckley, D. N., Abstract No. 163, 205th Meeting of The Electrochemical Society, San Antonio, Texas, May 9-13, 2004 Google Scholar
24. Nakahara, S., Ahmed, S., and Buckley, D. N., Abstract No. 913, 206th Meeting of The Electrochemical Society, Honolulu, Hawaii, October 3-8, 2004.Google Scholar
25. Fujiki, Y., J. Phys. Soc. Japan 14, 1308 (1959).Google Scholar
26. Tewordt, L., Phys. Rev. 109, 61 (1958).Google Scholar
27. Kimura, H., Maddin, R., and Kuhlmann-Wilsdorf, D., Acta Met. 7, 145 (1959).Google Scholar
28. Schüle, W., Seeger, A., Schumacher, D., and King, K., Phys. Stat. Sol. 2, 1199 (1962).Google Scholar