Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T07:46:43.326Z Has data issue: false hasContentIssue false

Effect of Surface Steps on Dislocation Structure During Nanoindentation

Published online by Cambridge University Press:  17 March 2011

Jonathan A. Zimmerman
Affiliation:
Sandia National Laboratories, P.O. Box 969, Mail Stop 9161, Livermore, CA 94551 contact author, e-mail: jzimmer@sandia.gov
Patrick A. Klein
Affiliation:
Sandia National Laboratories, P.O. Box 969, Mail Stop 9161, Livermore, CA 94551
Stephen M. Foiles
Affiliation:
Sandia National Laboratories, P.O. Box 969, Mail Stop 9161, Livermore, CA 94551
Get access

Abstract

Nucleation of dislocations during nanoindentation is a prime example of how nanoscopic details play an important role in the evolution of macroscopic mechanical behavior. Experimental studies of nanoindentation show that surface irregularities, such as steps, alter the mechanical response during indentation. Atomistic simulations using the embedded atom method are used to examine the indentation of a Au(111) crystal with a surface step. The amount of force needed to nucleate dislocations decreases significantly for indentation close to the step. A recently formulated atomistic deformation metric, the slip vector, is used to quantify dislocation content. This metric is used with the local atomic stress to determine the critical resolved shear stress necessary for dislocation nucleation. Atomic stress fields are also compared with continuum calculations performed using non-linear elasticity with a constitutive relation based on the same interatomic potential. This constitutive model shows good agreement of indentation forces and stresses with the atomistic simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Johnson, K. L., Contact Mechanics. New York: Cambridge University Press, 1985.Google Scholar
[2] Corcoran, S. G., Colton, R. J., Lilleodden, E. T., and Gerberich, W. W. Phys. Rev. B, vol. 55, p. R16057, 1997.Google Scholar
[3] Michalske, T. A. and Houston, J. E. Acta. Mater., vol. 46, p. 391, 1998.Google Scholar
[4] Kiely, J. D., Jarausch, K. F., Houston, J. E., and Russell, P. E. J. Mater. Res., vol. 14, p. 2219, 1999.Google Scholar
[5] Kiely, J. D., Hwang, R. Q., and Houston, J. E. Phys. Rev. Lett., vol. 81, p. 4424, 1998.Google Scholar
[6] Tadmor, E. B., Miller, R., and Phillips, R. J. Mater. Res., vol. 14, p. 2233, 1999.Google Scholar
[7] Shenoy, V. B., Phillips, R., and Tadmor, E. B. J. Mech. Phys. Solids, vol. 48, p. 649, 2000.Google Scholar
[8] Kelchner, C. L., Plimpton, S. J., and Hamilton, J. C. Phys. Rev. B, vol. 58, p. 11085, 1998.Google Scholar
[9] Foiles, S. M., Baskes, M. I., and Daw, M. S. Phys. Rev. B, vol. 33, p. 7983, 1986.Google Scholar
[10] Liu, S., Zhang, Z., Comsa, G., and Metiu, H. Phys. Rev. Lett., vol. 71, p. 2967, 1993.Google Scholar
[11] Press, W. H., Numerical Recipes: the Art of Scientific Computing. New York: Cambridge University Press, 1989.Google Scholar
[12] Swenson, R. J. Am. J. Phys., vol. 51, p. 940, 1983.Google Scholar
[13] Smith, R. W. and Srolovitz, D. J. J. Appl. Phys., vol. 79, no. 3, p. 1448, 1996.Google Scholar
[14] Cheung, K. S. and Yip, S. J. Appl. Phys., vol. 70, p. 5688, 1991.Google Scholar
[15] Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C., and Foiles, S. M. Phys. Rev. Lett., 2000. in review.Google Scholar
[16] Rice, J. R. J. Mech. Phys. Solids, vol. 40, p. 239, 1992.Google Scholar
[17] Zimmerman, J. A.. PhD thesis, Stanford University, 2000.Google Scholar
[18] Kohlhoff, S., Gumbsch, P., and Fischmeister, H. F. Phil. Mag. A, vol. 64, p. 851, 1991.Google Scholar
[19] Broughton, J. Q., Abraham, F. F., Bernstein, N., and Kaxiras, E. Phys. Rev. B, vol. 60, p. 2391, 1999.Google Scholar
[20] Huang, K. Proc. Royal Soc. London, vol. A203, p. 178, 1950.Google Scholar
[21] Born, M. and Huang, K., Dynamical Theories of Crystal Lattices. Oxford: Clarendon Press, 1956.Google Scholar