Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T04:08:38.449Z Has data issue: false hasContentIssue false

The Effect of Surface Preparation on the Structure and Electrical Transport in an Organic Semiconductor

Published online by Cambridge University Press:  21 March 2011

Laura L. Kosbar
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.
Christos D. Dimitrakopoulos
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.
Debra J. Mascaro
Affiliation:
Department of Materials Science and Engineering, MIT Cambridge, MA 02139
Get access

Abstract

Self-assembled monolayers (SAMs) with a variety of structures and terminal groups were evaluated as underlayers for pentacene deposition. It was found that the most critical factor in the formation of highly oriented thin film pentacene with large grain size was the geometric structure of the monolayer. Monolayers with terminal bonds parallel to the surface produce large pentacene grains with an angular rather than the dendridic structure normally observed on octadecyltrichlorosilane (OTS) coated substrates. The grain size, X-ray scattering, carrier mobility, and current on/off ratios are all improved with monolayers of the appropriate geometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cimitrakopoulos, C. C., Purushothaman, S., Kymissis, J., Callegari, A., and Shaw, J. M., Science 283, 822 (1999).Google Scholar
2. Dimitrakopoulos, C. D. and Mascaro, D. J. D. IBM J. Res. & Dev., 45, 1127, (2001) and references thereinGoogle Scholar
3. Jackson, T.N., Lin, Y-Y., Gundlach, D. J., and Klauk, H., IEEE J. Sel. Top. Quantum Electron. 4, 100 (1998).Google Scholar
4. Lovinger, A. J. and Rothberg, L. J., J. Mater. Res. 11, 1581 (1996).Google Scholar
5. Katz, H. E., J. Mater. Chem. 7, 369 (1997).Google Scholar
6. Brown, A. R., Jarrett, C. P., de Leeuw, D. M. and Matters, M., Synth. Met. 88, 37 (1997).Google Scholar
7. Garnier, F., Chem. Phys. 227, 253 (1998).Google Scholar
8. Horowitz, G., Adv. Mater. 10, 365 (1998).Google Scholar
9. Katz, H. E. and Bao, Z., J. Phys. Chem. B 104, 671 (2000).Google Scholar
10. Garnier, F., Yassar, A., Hajlaoui, R., Horowitz, G., Deloffre, R., Servet, B., Ries, S., and Alnot, P., J. Am.Chem. Soc. 115, 8716 (1993).Google Scholar
11. Dimitrakopoulos, C. D., Brown, A. R., and Pomp, A., J. Appl. Phys. 80, 2501 (1996).Google Scholar
12. Gundlach, D. J., Lin, Y.Y., Jackson, T. N., Nelson, S. F., and Schlom, D. G., IEEE Electron Device Lett. 18, 87 (1997).Google Scholar
13. Lin, Y. Y., Gundlach, D. J., Nelson, S. F., and Jackson, T. N., IEEE Electron Device Let.. 18, 606 (1997).Google Scholar
14. Gundlach, D. J., Klauk, H., Sheraw, C. D., Kuo, C. C., Huang, J. R., and Jackson, T. N., Tech. Dig. Intl. Devices Meeting, 111, 5.2.1 (1999).Google Scholar
15. Kane, M. G., Campi, J., Hammond, M. S., Cuomo, F. P., Greening, B., Sheraw, C. D., Nichols, J. A., Gundlach, D.J., Huang, J. R., Kuo, C-C., Jia, L., Klauk, H., and Jackson, T. N., IEEE Electron Device Letters 21, 534 (2000 ).Google Scholar
16. Dimitrakopoulos, C. D., Kymissis, J. and Purushothaman, S. US Patent Application YOR919990329Google Scholar
17. Kymissis, J., Dimitrakopoulos, C. D. and Purushothaman, S. IEEE Trans. Electr. Dev. in press (June 2001).Google Scholar
18. Wang, J., Gundlach, D. J., Kuo, C-C., and Jackson, T.N., 41st Electronic Materials Conf., June 1999.Google Scholar
19. Campbell, R. B., Robertson, J. Monteath, Trotter, J., Acta Cryst. 14, 705, (1961).Google Scholar