Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T12:42:18.469Z Has data issue: false hasContentIssue false

Effect of Substrate Type on the Electrical and Optical Properties of Cold-sputtered Indium Tin Oxide Films as a function of Post-deposition Heat Treatment

Published online by Cambridge University Press:  01 February 2011

Salil Joshi
Affiliation:
salil.joshi@gatech.edu, Georgia Institute of Technology, Materials Science and Engineering, Atlanta, Georgia, United States
Gregory W. Book
Affiliation:
gregory.book@mirc.gatech.edu, Georgia Institute of Technology, Nanotechnology Research Center, Atlanta, Georgia, United States
Rosario A. Gerhardt
Affiliation:
salil.joshi@gatech.edu, Georgia Institute of Technology, Materials Science and Engineering, Atlanta, Georgia, United States
Get access

Abstract

Indium Tin Oxide (ITO) films were deposited by RF sputtering onto glass and quartz substrates with no external heating. An ITO target containing 10 wt% SnO2 was used for the deposition in a Kurt Lesker PVD75 system, in an atmosphere of 50% O2 + 50% Ar. Post-deposition heat treatments were done on these coatings at 150°C, 300°C and 450°C in an atmosphere of commercial air or argon. The effects of these heat treatments on the microstructure and the properties of the films were evaluated using atomic force microscopy, resistivity measurements, and UV-visible absorption spectroscopy. The heat treatments were observed to significantly affect the properties such as transmittance in the visible region, optical band gap and the electrical resistivity of the films. The main differences are caused by the differences in thermal expansion coefficient of the substrates as compared to the sputtered ITO films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lewis, B. G. and Paine, D. C. MRS Bulletin 25 (8), 2227 (2000).Google Scholar
2 Batzill, M. and Diebold, U. Progress in Surface Science 79 (2-4), 47154 (2005).10.1016/j.progsurf.2005.09.002Google Scholar
3 Lewis, B. G. and Paine, D. C. MRS Bulletin, 22–27 (2000).Google Scholar
4 Gordon, R. G. MRS Bulletin 25 (8), 5257 (2000).10.1557/mrs2000.151Google Scholar
5 Shigesato, Y. and Paine, D. C. Applied Physics Letters 62 (11), 12681270 (1993).Google Scholar
6 Izumi, H. Ishihara, T. Yoshioka, H. and Motoyama, M. Thin Solid Films 411 (1), 3235 (2002).Google Scholar
7 Paine, D. C. Whitson, T. Janiac, D. Beresford, R. Yang, C. O. and Lewis, B. Journal of Applied Physics 85 (12), 84458450 (1999).Google Scholar
8 Choi, K.-H. Jeong, J.-A. Kang, J.-W. Kim, D.-G. Kim, J. K. Na, S.-I. Kim, D.-Y. Kim, S.-S. and Kim, H.-K. Solar Energy Materials and Solar Cells 93 (8), 12481255 (2009).10.1016/j.solmat.2009.01.015Google Scholar
9 Miller, C. edited by Keithley, I. Instruments (Keithley Instruments, Inc., Cleveland OH, 2000).Google Scholar
10 Tauc, J. Amorphous and Liquid Semiconductors. (Plenum, New York, 1974).10.1007/978-1-4615-8705-7Google Scholar
11 Wu, W. F. and Chiou, B. S. Thin Solid Films 293 (1-2), 244250 (1997).10.1016/S0040-6090(96)09105-5Google Scholar
12 CRC Handbook of Chemistry and Physics, 61st Edition. (CRC Press Inc., Boca Raton, 1977).Google Scholar
13 Frank, G. and Köstlin, H., Applied Physics A: Materials Science & Processing 27 (4), 197206 (1982).Google Scholar
14 Gonzalez, G. B. Mason, T. O. Quintana, J. P. Warschkow, O. Ellis, D. E. Hwang, J. H. Hodges, J. P. and Jorgensen, J. D. Journal of Applied Physics 96 (7), 39123920 (2004).10.1063/1.1783610Google Scholar
15 Hamberg, I. Granqvist, C. G. Berggren, K. F. Sernelius, B. E. and Engström, L., Physical Review B 30 (6), 32403249 (1984).Google Scholar
16 Nadaud, N. Lequeux, N. Nanot, M. Jove, J. and Roisnel, T. Journal of Solid State Chemistry 135 (1), 140148 (1998).10.1006/jssc.1997.7613Google Scholar
17 Warschkow, O. Ellis, D. E. Gonzalez, G. B. and Mason, T. O. Journal of the American Ceramic Society 86 (10), 17001706 (2003).10.1111/j.1151-2916.2003.tb03543.xGoogle Scholar
18 Warschkow, O. Ellis, D. E. Gonzalez, G. B. and Mason, T. O. Journal of the American Ceramic Society 86 (10), 17071711 (2003).Google Scholar
19 Warschkow, O. Miljacic, L. Ellis, D. E. Gonzalez, G. and Mason, T. O. Journal of the American Ceramic Society 89 (2), 616619 (2006).Google Scholar
20 Erhart, P. Klein, A. Egdell, R. G. and Albe, K. Physical Review B (Condensed Matter) 75 (15), 153205–153201 (2007).10.1103/PhysRevB.75.153205Google Scholar
21 Morikawa, H. and Fujita, M. Thin Solid Films 359 (1), 6167 (2000).Google Scholar