Skip to main content Accessibility help
×
Home

Effect of Substrate Strain and Interface on Magnetic Properties of EuTiO3 Thin Film

  • Katsuhisa Tanaka (a1), Koji Fujita (a1), Yuya Maruyama (a1), Yoshiro Kususe (a1), Hideo Murakami (a1), Hirofumi Akamatsu (a2) and Shunsuke Murai (a1)...

Abstract

Bulk EuTiO3 is known as a compound in which spin and soft phonon mode is strongly coupled. Recent theoretical study suggests that application of stress or formation of strain leads to a drastic change in magnetic and dielectric properties of EuTiO3 and that so-called multiferroic properties emerge under such a situation. In the present study, effect of strain induced by a substrate, on which EuTiO3 thin film is deposited, on the magnetic properties of the film has been experimentally examined. By using a pulsed laser deposition method, EuTiO3 thin film has been deposited on different kinds of substrate, i.e., LaAlO3, SrTiO3, and DyScO3; the lattice parameter of these compounds is smaller than, just the same as, and larger than that of EuTiO3, respectively. X-ray diffraction analysis confirms that the strain induced in the plane of as-deposited EuTiO3 thin films on different substrates is coincident with the lattice parameter of the substrate compounds. Also, all the as-deposited EuTiO3 thin films manifest elongation of lattice in a direction perpendicular to the film surface. Temperature dependence of magnetization indicates that all the thin films exhibit ferromagnetic behavior at low temperatures. The magnetization at 2 K under a magnetic field of 100 Oe is the highest for EuTiO3 on DyScO3 and the lowest for EuTiO3 on LaAlO3. The experimental result is coincident with the first-principles calculations which predict that ferromagnetic spin configuration becomes more stable as the lattice volume of EuTiO3is increased.

Copyright

References

Hide All
1. Schooley, J. F., Hosler, W. R., Ambler, E., Becker, J. H., Cohen, M. L., and Koonce, C. S., Phys. Rev. Lett. 14, 305 (1965).
2. Baratoff, A. and Binnig, G., Physica B 108, 1335 (1981).
3. Leitner, A., Rogers, C. T., Price, J. C., Rudman, D. A., and Herman, D. R., Appl. Phys. Lett. 72, 3065 (1998).
4. Olaya, D., Pan, F., Rogers, C. T., and Price, J. C., Appl. Phys. Lett. 84, 4020 (2004).
5. Reyren, N., Thiel, S., Caviglia, A. D., Fitting Kourkoutis, L., Hammerl, G., Richter, C., Schneider, C. W., Kopp, T., Rüetschi, A.-S., Jaccard, D., Gabay, M., Muller, D. A., Triscone, J.-M., Mannhart, J., Science 317, 1196 (2007).
6. Ohta, H., Kim, S., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., Nomura, T., Nakanishi, Y., Ikuhara, Y., Hirano, M., Hosono, H., and Koumoto, K., Nature Mater. 6, 129 (2007).
7. McGuire, T. R., Shafer, M. W., Joenk, R. J., Alperin, H. A., and Pickart, S. J., J. Appl. Phys. 37, 981 (1966).
8. Chien, C.-L., DeBenedetti, S., and De, F. Barros, S., Phys. Rev. B 10, 3913 (1974).
9. Katsufuji, T. and Takagi, H., Phys. Rev. B 64, 054415 (2001).
10. Viallet, V., Marucco, J.-F., Saint, J., Herbst-Ghysel, M., and Dragoe, N., J. Alloys Compd. 461, 346 (2008).
11. Zong, Y., Fujita, K., Akamatsu, H., Murai, S., and Tanaka, K., J. Solid State Chem. 183, 168 (2010).
12. Kolodiazhnyi, T., Fujita, K., Wang, L., Zong, Y., Tanaka, K., Sakka, Y., and Takayama-Muromachi, E., Appl. Phys. Lett. 96, 252901 (2010).
13. Cheong, S. W. and Mostovoy, M., Nature Mater. 6, 13 (2007).
14. Tokura, Y., Science 312, 1481 (2006).
15. Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y., Nature 426, 55 (2003).
16. Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., and Ramesh, R., Science 299, 1719 (2003).
17. Kimura, T., Kawamoto, S., Yamada, I., Azuma, M., Takano, M., and Tokura, Y., Phys. Rev. B 67, 180401 (2003).
18. Fennie, C. J. and Rabe, K. M. Phys. Rev. Lett. 97, 267602 (2006).
19. Ranjan, R., Nabi, H. S., and Pentcheva, R., J. Phys.: Condens. Matter 19, 406217 (2007).
20. Akamatsu, H., Kumagai, Y., Oba, F., Fujita, K., Murakami, H., Tanaka, K., and Tanaka, I., Phys. Rev. B 83, 214421 (2011).
21. Fujita, K., Wakasugi, N., Murai, S., Zong, Y., and Tanaka, K., Appl. Phys. Lett. 94, 062512 (2009).
22. Lee, J. H., Fang, L., Vlahos, E., Ke, X., Jung, Y. W., Fitting Kourkoutis, L., Kim, J.-W., Ryan, P. J., Heeg, T., Roeckerath, M., Goian, V., Bernhagen, M., Uecker, R., Hammel, P. C., Rabe, K. M., Kamba, S., Schubert, J., Freeland, J. W., Muller, D. A., Fennie, C. J., Schiffer, P., Gopalan, V., Johnston-Halperin, E., and Schlom, D. G., Nature 466, 954 (2010).
23. Takahashi, K. S., Onoda, M., Kawasaki, M., Nagaosa, N., and Tokural, Y., Phys. Rev. Lett. 103, 057204 (2009).
24. Chien, C.-L., DeBenedetti, S., and Barros, F. D. S., Phys. Rev. B 10, 3913 (1974).
25. Shafer, M. W., J. Appl. Phys. 36, 1145 (1965).
26. Kunes, J., Ku, W., and Pickett, W. E., J. Phys. Soc. Jpn. 74, 1408 (2005).
27. Souza-Neto, N. M., Haskel, D., Tseng, Y.-C., and Lapertot, G., Phys. Rev. Lett. 102, 057206 (2009).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed