Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-23T18:39:48.575Z Has data issue: false hasContentIssue false

The Effect of Sputtering Conditions on Submicron Contact Filling Using Laser Planarization

Published online by Cambridge University Press:  25 February 2011

C. Yu
Affiliation:
Micron Technology Inc., 2805 East Columbia Road, Boise, ID 83706
T.T. Doan
Affiliation:
Micron Technology Inc., 2805 East Columbia Road, Boise, ID 83706
S. Kim
Affiliation:
Micron Technology Inc., 2805 East Columbia Road, Boise, ID 83706
G.S. Sandhu
Affiliation:
Micron Technology Inc., 2805 East Columbia Road, Boise, ID 83706
Get access

Abstract

The effect of sputtering conditions of Al alloy films on the ability to fill submicron contact/vias by laser planarization has been investigated. A significant improvement in the process window (complete contact filling to optical ablation) has been observed by using high temperature and/or bias sputtering. In general, the process window increased with the increasing deposition temperature and substrate bias voltage. For 0.9 μm diameter contacts of aspect ratio ∼ 1, the process window for contact filling by AlSi(l%)Cu(0.5%) increased from 5% for standard deposition parameters to a record high 30% by using the optimized sputtering conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tuckerman, D.B. and Schmit, R.L., in Proc. 1985 VLSI Multilevel Interconnection Conf.(VMIC), IEEE Cat. 85CH2197-2, pp. 24 (1985).Google Scholar
2. Tuckerman, D.B. and Weisberg, A.H., IEEE Electron Dev. Lett. EDL–7, 1, (1986).Google Scholar
3. Wang, S.Q., and Ong, E., in Proc. IEEE VLSI Multilevel Interconnection Conf.(V-MIC), IEEE Cat. 90TH0325-1, pp. 431 (1990).Google Scholar
4. Mukai, R., Sasaki, N. and Nakano, M., IEEE Electron Dev. Lett. EDL–8, 76, (1987).Google Scholar
5. Woratschek, B., Carey, P., Stolz, M., and Bahmann, F., 1989 VLSI Multilevel Interconnection Conf.(V-MIC), IEEE Cat. 89TH0259-2, pp. 309 (1989).Google Scholar
6. Yu, C., Doan, T.T., and Kim, S., 1990 VLSI Multilevel Interconnection Conf.(V-MIC), IEEE Cat. 90TH0325-1, pp. 444 (1990).Google Scholar
7. Liu, R., Cheung, K.P., and Lai, W.Y.-C., in Proc. 1989 VLSI Multilevel Interconnection Conf.(V-MIC), IEEE Cat. 89TH0259-2, pp. 329 (1989).Google Scholar
8. Ono, H., Ushiku, Y. and Yoda, T., in Proc. IEEE VLSI Multilevel Interconnection Conf.(VMIC), IEEE Cat. 90TH0325-1, pp. 76 (1990).Google Scholar
9. Hariu, T., Watanabe, K., Inoue, M., Takada, T. and Tsuchikawa, H., in Proc. 1989 Int. Rel. Phys. Sym. (IRPS), IEEE Cat. 89CH2650-0, 210, (1989).Google Scholar
10. Skelly, D.W. and Gruerke, L.A., J. Vac. Sci. Technol., A4, 457, (1986).Google Scholar
11 Homma, Y. and Tsunekawa, S., J. Electrochem. Soc. 132(6), 1466 (1985).Google Scholar
12. Baseman, R.J., J. Vac. Sci. Technol. B8(1), 84 (1990).Google Scholar
13. Raaijmakers, I.J., Chu, H., Ong, E., Wang, S., and Ritz, K., presented in MRS'spring 1990 meeting at San Fransisco, CA (1990).Google Scholar
14. Woratschek, B., Carey, P., and Bahmann, F., 1990 VLSI Multilevel Interconnection Conf.(V-MIC), IEEE Cat. 90TH0325-1, pp. 83 (1990).Google Scholar
15. Chen, S., private communication.Google Scholar
16. Yu, C. and Sandhu, G.S.. (Unpublished data)Google Scholar
17. Lai, W. Y.-C., Liu, Ruichen, Cheung, K. P., and Heim, R., 1989 VLSI Multilevel Interconnection Conf.(V-MIC), IEEE Cat. 89TH0259-2, pp. 501 (1989).Google Scholar
18. Yu, C., Sandhu, G.S. and, Doan, T.T., in the 7th International Tungsten Workshop, Dallas, Texas. (To be published)Google Scholar