Skip to main content Accessibility help

Effect of Sn Substitution on the Thermoelectric Properties of Nanostructured Bulk Bi2-xSbxTe3 Alloy.

  • Sumithra. Santhanam (a1), Nathan J. Takas (a1), Westly M. Nolting (a1) (a2), Pierre F.P. Poudeu (a1) (a3) and Kevin L. Stokes (a1) (a2)...


The carrier concentration and electronic transport properties in Bi2-xSbxTe3 alloy can be tuned by varying the Bi to Sb ratio, for high thermoelectric figure of merit. The concentration of intrinsic antisite defects in these alloys is also known to change with Bi to Sb ratio. Here we report the thermoelectric figure of merit of Sn doped Bi0.5Sb1.5Te3 alloy. Different atomic percentages of Sn was substituted at Bi/Sb site in Bi0.5Sb1.5Te3 alloy, synthesized by planetary ball milling. The electrical conductivity decreases with increasing Sn doping but for higher Sn content the electrical conductivity increases compared to undoped alloy. The Seebeck coefficient changes in accordance to electrical conductivity, resulting in small decrease in power factor for highest Sn doping. The lattice thermal conductivity shows a systematic decrease, with increasing Sn concentration resulting in a significant thermal conductivity reduction. Hence an increase in thermoelectric figure of merit could be achieved for the highest Sn (3at%) doping in Bi0.5Sb1.5Te3 alloy as compared to undoped alloy.


Corresponding author

* Email:


Hide All
1) Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashae, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G. and Ren, Z., Science, 320, (2008), 634.
2) Horak, J., Cermak, K. and Koudelka, L.., J. Phys. Chem. Solids, 47, 8, (1986), pg 805809.
3) Lostak, P., Navratil, J., Sramkova, J. and Horak, J.., Phys.stat.sol. (a), 135, (1993), pg 519.
4) Lostak, P., Karamazov, S. and Horak, J.., Phys.stat.sol. (a), 143, (1993), pg 271.
5) Navratil, J., Lostak, P. and Horak, J.., Cryst. Res. Technol., 26, 6, (1991), pg 675.
6) Kulbachinskii, V.A, Kytin, V.G, Tarasov, P.M, and Yuzeeva, N.A., Phys. Sol. Stat., 52, 9, (2010), pg 1830.
7) Jawroski, C.M., Kulbachinskii, V. and Heremans, J.P.., Phys. Rev. B., 80, (2009), pg 233201.
8) Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Synder, G.J.., Science, 321,(2008), pg 554.
9) Kulbachinskii, V., Yu.Kaminsky, A., Kindo, K., Narumi, Y., Suga, K., Kawasaki, S., Sasaki, M., Miyajima, N., Wu, G.R., Lostak, P. and Hajek, P.., Phys.. stat. sol., 229, (2002), pg. 1467.
10) Svechnikova, T. E., Zemskov, V. S., Zhitinskaya, M. K., Nemov, S. A., Polikarpova, N. V., Müller, E. and Platzek, D.. Inorg. Mater., 42, 2, (2006), pg 101107.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed