Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-26T13:20:34.756Z Has data issue: false hasContentIssue false

Effect of Porosity on Properties of Nanocrystalline Materials

Published online by Cambridge University Press:  25 February 2011

A.M. El-Sherik
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
U. Erb
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
V. Krstic
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
B. Szpunar
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
M.J. Aus
Affiliation:
Department of Materials and Metallurgical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6
G. Palumbo
Affiliation:
Ontario Hydro Research Division, 800 Kipling Ave, Toronto, Ontario, Canada M8Z 5S4
K.T. Aust
Affiliation:
Department of Metallurgy and Materials Science, University of Toronto, Ontario, Canada M5S 1A4
Get access

Abstract

This paper discusses the effects residual porosity may have on some properties of nanocrystalline materials. The two examples considered here are Young's modulus and saturation magnetization. It will be shown that the large variations observed for these properties may be explained, at least in part, on the basis of the residual porosity in thematerials which may vary considerably depending on the production techniques used to synthesize nanostructured materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gleiter, H., Second Riso Int. Symr. Metallurgy and Mat. Sci., edited by Hansen, N., Horsewell, A. and Lilholt, H. (Riso National Laboratory, Denmark, 1981) p. 15 Google Scholar
2. Gleiter, H., Prog. Mat. Sci., 33, 224 (1989)Google Scholar
3. Palumbo, G., Thorpe, S.J. and Aust, K.T., Scripta Metall., 24, 1347 (1990).Google Scholar
4. Wang, N., Palumbo, G., Wang, Z., Erb, U. and Aust, K.T., Scripta Metall. et Mater., acceptedGoogle Scholar
5. Hall, O.E., Proc. Phys. Soc. London, B 64, 747 (1951).Google Scholar
6. Petch, N.J., J. Iron Steel Inst, 174, 25 (1953).Google Scholar
7. Jang, J.S.C. and Koch, C.C., Scripta Metall., 24, 1599 (1990).Google Scholar
8. Nieman, G.W., Weertman, J.R. and Siegel, R.W., Scripta Metall., 23, 2013 (1989).Google Scholar
9. Ganapathi, S.K. and Rigney, D.A., Scripta Metall., 24, 1675 (1990).Google Scholar
10. Hughes, G.D., Smith, S.D., Pande, C.S., Johnson, H.R. and Armstrong, R.W., Scripta Metall., 20, 93 (1986).Google Scholar
11. Lu, K., Wei, W.D. and Wang, J.T., Scripta Metall. et Mater.,24, 2319 (1989).Google Scholar
12. Christman, T. and Jain, M., Scripta Metall. et Mater., 25, 767 (1991).Google Scholar
13. Chokshi, A.H., Rosen, A., Karch, J. and Gleiter, H., Scripta Metall., 23, 1679 (1989).Google Scholar
14. Palumbo, G., Erb, U. and Aust, K.T., Scripta Metall., 24, 2347 (1990).Google Scholar
15. EI-Sherik, A.M., Erb, U., Palumbo, G. and Aust, K.T., Scripta Metall. et Mater., 27, 1185 (1992).Google Scholar
16. Korn, D., Morsch, A., Birringer, R., Arnold, W. and Gleiter, H., J.de Phys., Coll. C5, Suppl.au tome 10, 49, C5769 (1988)Google Scholar
17. Nieman, G.W., Weertman, J.R. and Siegel, R.W., Scripta Metall. et Mater.,24, 145 (1990).Google Scholar
18. Nieman, G.W., Weertman, J.R. and Siegel, R.W., J. Mater. Res., 6, 1012 (1991).Google Scholar
19. Wong, L., Ostrander, D., Erb, U., Palumbo, G. and Aust, K.T, Proc. TMS Symp. Nanophase and Nanocryst. Struct., San Diego, March 1992, to be publ.Google Scholar
20. Krstic, V.D. and Erickson, W.H., J. Mater. Sci, 22, 2881 (1987).Google Scholar
21. Krstic, V.D. and Erickson, W.H., I. Mater. Sci, 23, 4097 (1988).Google Scholar
22. Krstic, V.D., Erb, U. and Palumbo, G., to be publ.Google Scholar
23. Wagner, W., Wiedenmann, A., Petry, W., Geibel, A. and Gleiter, H., J. Mat. Res., 6, 2305 (1991).Google Scholar
24. Liou, S.H. and Chien, C.L., J. App. Phys., 63, 4240 (1988).Google Scholar
25. Shull, R.D. and Bennett, L.H., Nanostr. Mat., 1, 83 (1992).Google Scholar
26. Gong, W., Zhao, H. UZ. and Chen, J., J. App. Phys., 69, 5119 (1991).Google Scholar
27. Du, Y.W., Xu, M.X., Wu, J., Shi, Y.B., Lu, H.X. and Xue, R.H., J. App. Phys., 70, 5903 (1991).Google Scholar
28. Gangopadhyay, S., Hadjipanayis, G.C., Dale, B., Sorensen, C.M. and Klabunde, K.J., Nanostr. Mat., 1, 77 (1992).Google Scholar
29. Aus, M.J., Szpunar, B., EI-Sherik, A.M., Erb, U., Palumbo, G. and Aust, K.T., Scripta Metall.et Mater., 27, 27, 1639 (1992).Google Scholar