Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-20T17:08:08.276Z Has data issue: false hasContentIssue false

Effect of Point Defect Injection on B diffusion in C containing Si and SiGe

Published online by Cambridge University Press:  17 March 2011

Mudith S. A. Karunaratne
Affiliation:
Materials Research Group, School of Engineering Sciences and Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW, UK
Janet M. Bonar
Affiliation:
School of Electronics & Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
Jing Zhang
Affiliation:
Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW, UK
Arthur F. W. Willoughby
Affiliation:
Materials Research Group, School of Engineering Sciences and Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London SW7 2BW, UK
Get access

Abstract

In this paper, we compare B diffusion in epitaxial Si, Si with 0.1%C, SiGe with 11% Ge and SiGe:C with 11%Ge and 0.1%C at 1000°C under interstitial, vacancy and non-injection annealing conditions. Diffusion coefficients of B in each material were extracted by computer simulation, using secondary ion mass spectroscopy (SIMS) profiles obtained from samples before and after annealing.

Interstitial injection enhances B diffusion considerably in all materials compared to inert annealing. In samples which experienced vacancy injection, B diffusion was suppressed. The results are consistent with the view that B diffusion in these materials occurs primarily via interstitialcy type defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fahey, P. M., Griffin, P. B. and, Plummer, J. D., Rev. Mod. Phys., 61(2), 289, (1989).Google Scholar
2. Hu, S. M., Appl. Phys. Lett., 43(5), 449, (1983).Google Scholar
3. Zaitsu, Y., Shimizu, T., Takeuchi, J., Matsumoto, S., Yoshida, M., Abe, T. and, Arai, E., J. Electrochem. Soc., 145(1), 258, (1998).Google Scholar
4. Osada, K., Zaitsu, Y., Matsumoto, S., Yoshida, M., Arai, E. and, Abe, T., J. Electrochem. Soc., 142(1), 202, (1995).Google Scholar
5. Ahn, S. T., Kennel, H. W. and Plummer, J. D. and Tiller, W. A., J. Appl. Phys., 64(10), 4914, (1988).Google Scholar
6. Bonar, J. M., Willoughby, A. F. W., Dan, A. H., McGregor, B. M., Lerch, W., Loeffelmacher, D., Cooke, G. A. and, Dowsett, M. G., J. Mater. Sci.: Materials in Electronics, 12(4-6), 219, (2001).Google Scholar
7. Osten, H. J., Rucker, H., Liu, J.P., and, Heinemann, B., Microelect. Eng., 56, 209, (2001).Google Scholar
8. Ashburn, Peter, Mater. Sci. Semi. Process., 4, 521, (2001).Google Scholar
9. Meyer, D. J., Webb, D. A., Ward, M. G., Sellar, J. D., Zeng, P. Y. and, Robinson, J., Mater. Sci. Semi. Process., 4, 529, (2001).Google Scholar
10. Scholz, R., Gösele, U., Huh, J.-Y. and, Tan, T. Y., Appl. Phys. Lett., 72(2), 200, (1998).Google Scholar
11. Scholz, R. F., Werner, P., Gösele, U. and, Tan, T. Y., Appl. Phys. Lett., 74(3), 392, (1999).Google Scholar
12. Athena User's Manual, 2D Process Simulation Software, SILVACO International, 4701 Patrick Henry Drive, Bldg. 1, Santa Clara, CA 95054, USA, 2000.Google Scholar
13. Fair, R. B., in Impurity Doping Processes in Silicon, edited by Wang, F. F. Y., (North Holand, Amsterdam, The Netherlands, 1981), pp. 315.Google Scholar