Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-17T18:04:56.118Z Has data issue: false hasContentIssue false

The Effect of Iron and Oxygen Additions on the Properties of Zr-Al-Cu-Ni Bulk Metallic Glass Forming Alloys

Published online by Cambridge University Press:  10 February 2011

J. Eckert
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, D-01171 Dresden, Germany
N. Mattern
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, D-01171 Dresden, Germany
M. Seidel
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, D-01171 Dresden, Germany
L. Schultz
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, D-01171 Dresden, Germany
Get access

Abstract

The effect of iron and oxygen additions on the thermal stability of rapidly quenched amorphous Zr65Al7.5Cu17.5Ni10) was studied by x-ray diffraction and differential scanning calorimetry. With increasing Fe content the glass transition temperature Tg and the crystallization temperature Tx shift to higher temperatures. The increase is more significant for Tg than for Tx, resulting in a decrease of the supercooled liquid region with increasing Fe content. For oxygen additions Tx decreases with increasing oxygen content whereas Tg increases slightly, causing a decrease of the supercooled liquid region with increasing oxygen content. The results reveal that even minor iron or oxygen contaminations lead to drastic changes in the glass transition behavior and the crystallization mode. Large iron or oxygen contents lead to the formation of nanocrystalline microstructures instead of coarse-grained material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Kohinata, M., Ohtera, K., Tsai, A.P. and Masumoto, T., Mater. Trans. JIM 30, 378(1989).Google Scholar
2. Inoue, A., Zhang, T. and Masumoto, T., J. Non-Cryst. Solids 156–158, 473 (1993).Google Scholar
3. Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
4. Johnson, W.L., Mater. Sci. Forum 225–227, 35 (1996).Google Scholar
5. Seidel, M., Eckert, J. and Schultz, L., J. Appl. Phys. 77, 5446 (1995).Google Scholar
6. Seidel, M., Eckert, J. and Schultz, L., Proc. ISMANAM-96, Rome, May 1996; Mater. Sci. Forum (in print).Google Scholar
7. Polk, D.E., Dube, C.E. and Giessen, B.V., in Rapidly Quenched Metals III, edited by Cantor, B. (Metals Society, London, 1978) p. 220.Google Scholar
8. Koster, U., Meinhardt, J., Roos, S. and Rüdiger, A., Mater. Sci. Forum 225–227, 311 (1996).Google Scholar
9. Tsai, A.P., Kawase, D., Inoue, A. and Masumoto, T., Scr. Metall. Mater. 29, 657 (1993).Google Scholar
10. Zhang, T., Inoue, A. and Masumoto, T., Mater. Trans. JIM 32, 1005 (1991).Google Scholar
11. Inoue, A., Shinohara, Y., Yokoyama, Y. and Masumoto, T., Mater. Trans. JIM 36, 1276 (1995).Google Scholar
12. Johnson, W.L. (private communication).Google Scholar
13. Mattem, N., Eckert, J., Seidel, M., Kühn, U., Doyle, S. and Bächer, I., Proc. RQ-9, Bratislava, August 1996; Mater. Sei. Eng. A (in print).Google Scholar