Skip to main content Accessibility help
×
Home

The Effect of Interfacial Free Energies on the Stability of Microlaminates

  • A. C. Lewis (a1), A. B. Mann (a1) (a2), D. van Heerden (a1), D. Josell (a3) and T. P. Weihs (a1)...

Abstract

Laminated composites with polycrystalline layers typically break down at high temperatures through grain boundary grooving and the pinch-off of individual layers. Such materials, when exposed to high temperatures, develop grooves where grain boundaries meet the interfaces between layers. The depths of the grooves are controlled by the ratios of grain boundary and interfacial free energies, γgbint. Depending on the dimensions of the grains, these grooves can extend through the entire layer, causing pinch-off at the grain boundary. This pinch-off destroys the layering and eventually leads to a gross coarsening of the microstructure. Because microstructural stability is critical to performance for most applications, the ability to understand and predict the stability of microlaminates is a necessary tool. An existing model of this capillarity-driven breakdown requires the interfacial free energies, γgb and γint, as input parameters. Both biaxial and uniaxial zero creep tests have been used in conjunction with transmission electron microscopy to measure these interfacial energies in Ag/Ni and Nb/Nb5Si3 microlaminates.

Copyright

References

Hide All
1. Sridhar, N., Rickman, J.M. and Srolovitz, D.J., Acta mater., 45(7) 2715, (1997).
2. Carel, R., Thompson, C.V. and Frost, H.J., Acta mater., 44(6) 2479, (1996).
3. Josell, D. and Wang, Z.L.., Mat. Res. Soc. Symp. Proc., 235, (1995).
4. Josell, D. and Spaepen, F., Acta Metall. et Mater., 41(10) 30073015, (1993).
5. Josell, D. and Spaepen, F., Acta Metall. et Mater., 41(10) 30173027, (1993).
6. Nix, W.D., Metall. Trans., 20A, 2217, (1989).
7. Josell, D. and Carter, W.C., in Creep and Stress Relaxation, edited by Merchant, H.D. (TMS, 1997) p. 271.
8. Josell, D., Carter, W.C. and Bonevich, J.E., Nanostruct. Materials, 12, 387390, (1999).
9. Lee, H.J. et al. , Acta Mat., 47(15-16), 3965, (1999).
10. Snoeck, E. et al. , J. Magn. Magn. Mat., 151(24), (1995).
11. Troche, P. et al. , Thin Solid Films, 353(33), (1999).
12. Heerden, D. Van et al. , Metal Trans. (submitted), (2000).
13. Rowe, R.G. et al. , Scripta Metall. et Mater., 31, 1487, (1994).
14. Weihs, T.P. and Barbee, T.W., Acta Mater., 45, 2307, (1997).
15. Murr, L.E., Interfacial Phenomena in Metals and Alloys. (Addison-Wellesly, 1975).
16. Josell, D., Acta Metall. et Mater., 42(3), 10311038, (1994).
17. Mann, A.B. et al. , Rev. Sci. Instr. (submitted), (2000).
18. Lewis, A.C. et al. , Mater. Res. Soc. Proc., 586, (1999).

The Effect of Interfacial Free Energies on the Stability of Microlaminates

  • A. C. Lewis (a1), A. B. Mann (a1) (a2), D. van Heerden (a1), D. Josell (a3) and T. P. Weihs (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed