Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T01:10:08.357Z Has data issue: false hasContentIssue false

The Effect of Initial Growth Conditions on the Tilting of Lattice Planes in InP-ON-GaAs Heterostructures

Published online by Cambridge University Press:  25 February 2011

Ferenc Riesz
Affiliation:
Forschungsinstitut für Optoelektronik, Universität Linz, A-4040 Linz, Austria
K. Lischka
Affiliation:
Forschungsinstitut für Optoelektronik, Universität Linz, A-4040 Linz, Austria
K. Rakennus
Affiliation:
Department of Physics, Tampere University of Technology, P.O. Box 527, SF-33101 Tampere, Finland
T. Hakkarainen
Affiliation:
Department of Physics, Tampere University of Technology, P.O. Box 527, SF-33101 Tampere, Finland
A. Pesek
Affiliation:
Institut für Experimentalphysik, Universität Linz, A-4040 Linz, Austria
E. Koppensteiner
Affiliation:
Jnstitut für Halbleiterphysik, Universität Linz, A-4040 Linz, Austria
Get access

Abstract

The relative misorientation (tilt) between the epilayer and substrate (400) lattice planes of InP epilayers grown by gas-source molecular beam epitaxy on (100) GaAs substrates misoriented towards the (110) plane was studied by high resolution x-ray diffraction. For the growth temperature of 490–500°C, the direction of the relative tilt was nearly coincident with the direction of the substrate lattice plane tilting. In contrary, when a buffer layer was deposited at a lower temperature of 400–450°C prior to growth, an azimuthal rotation of about 45° was found between the directions of the relative tilt and the substrate lattice plane tilting. In order to explain the results, a temperature-dependent anisotropic nucleation model is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nagai, H., J. Appl. Phys. 45, 3789 (1974).Google Scholar
2. Pesek, A., Hingerl, K., Riesz, F. and Lischka, K., Semicond. Sci. Technol. 6, 705 (1991).Google Scholar
3. Ayers, J. E., Ghandhi, S. K. and Schowalter, L. J., J. Cryst. Growth 113, 430 (1991).Google Scholar
4. Riesz, F., Phil. Mag. Lett. (submitted).Google Scholar
5. Varrio, J., Salokatve, A., Asonen, H., Hovinen, M., Pessa, M., Ishida, K. and Kitajima, H., Mater. Res. Soc. Symp. Proc. 116, 91 (1988).Google Scholar
6. Rakennus, K., Hakkarainen, T., Tappura, K. and Pessa, M., Proc. 6th European Conference on MBE and Related Growth Methods, Apr. 2124, 1991, Tampere, Finland, Paper Fo 4.Google Scholar
7. Riesz, F., Rakennus, K., Hakkarainen, T. and Pessa, M., J. Vac. Sci. Technol. B9, 176 (1991).Google Scholar
8. Hull, R. and Fischer-Colbrie, A., Appl. Phys. Lett. 50, 851 (1987).Google Scholar
9. Horikoshi, Y., Yamaguchi, H., Briones, F. and Kawashima, M., J. Cryst. Growth 105, 326 (1987).Google Scholar
10. Morishita, Y., Maruno, S., Gotoda, M., Nomura, Y. and Ogata, H., J. Cryst. Growth 95, 176 (1989).Google Scholar
11. Sugiura, H., Kawashima, M. and Horikoshi, Y., Jap. J. Appl. Phys. 25, 1847 (1986).Google Scholar
12. Morishita, Y., Maruno, S., Gotoda, M., Nomura, Y. and Ogata, H., Appl. Phys. Lett. 53, 42 (1988).Google Scholar