Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T02:25:35.087Z Has data issue: false hasContentIssue false

Effect of Hydrogen Peroxide on Oxidation of Copper in CMP Slurries Containing Glycine and Cu Sulfate

Published online by Cambridge University Press:  15 March 2011

Tianbao Du
Affiliation:
Advanced Materials Processing and Analysis Center University of Central Florida Orlando, FL 32816-2455
Arun Vijayakumar
Affiliation:
Advanced Materials Processing and Analysis Center University of Central Florida Orlando, FL 32816-2455
Vimal Desai
Affiliation:
Advanced Materials Processing and Analysis Center University of Central Florida Orlando, FL 32816-2455
Get access

Abstract

This study compares the oxidative dissolution, passivation, and polishing behavior of copper chemical mechanical polishing in the presence of hydrogen peroxide, glycine and copper sulfate. High purity discs were used to study the dissolution and oxidation kinetics under static and dynamic conditions at pH 4 with varying H2O2 concentrations. Changes in surface chemistry of the statically etched copper-disc were investigated using X-ray photoelectron spectroscopy (XPS). With the addition of glycine and copper sulfate to the slurry, the copper removal rates increased significantly and the maximum removal rate shifted to a H2O2 concentration of 3%. Electrochemical investigation indicates an enhanced dissolution of copper, which might be due to the strong catalytic activity of Cu(II)-glycine complexes in decomposing H2O2 to yield hydroxyl radicals. XPS results suggest that the passivation at higher H2O2 concentrations in the presence of glycine and copper sulfate is provided by the OH radicals adsorbed on Cu surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Du, T., Desai, V., J. Mat. Sci. Lett., 22, 1623 (2003).Google Scholar
2. Luo, Q., Campbell, D. R., and Babu, S. V., Langmuir, 12, 3563 (1996).Google Scholar
3. Hirabayashi, H., Higuchi, M., Kinoshita, M., Kaneko, H., Hagasaka, N., Mase, K. and Oshima, J., U.S. Pat. 5,575,885 (1996).Google Scholar
4. Nguyen, V., VanKranenburg, H., and Woerlee, P., Microelectronic Engineering, 50, 403 (2000).Google Scholar
5. Luo, Q., and Babu, S. V., J. Electrochem. Soc., 147, 4639 (2000).Google Scholar
6. Wrschka, P., Hernandez, J., Oehrlein, G. S., and King, J., J. Electrochem. Soc., 147,706 (2000).Google Scholar
7. Luo, Q., Mackay, R. A., and Babu, S. V., Chem. Mater., 9, 2101 (1997).Google Scholar
8. Stavreva, Z., Zeidler, D., Plotner, M., and Drescher, K., Appl. Surf. Sci., 91, 192 (1995).Google Scholar
9. Zeidler, D., Stavreva, Z., Plotner, M., and Drescher, K., Microelectronic Engineering, 33, 259 (1997).Google Scholar
10. Du, T., Tamboli, D. and Desai, V., Microelectronic Engineering, 69, 1 (2003).Google Scholar
11. Gutmann, R. J., Steigerwald, J. M., You, L., Price, D. T., Neirynck, J., Duquette, D. J., and Murarka, S. P., Thin Solid Films, 270, 596 (1995).Google Scholar
12. Du, T., Tamboli, D., Luo, Y. and Desai, V., Applied Surface Science, 229, 167 (2004).Google Scholar
13. Kautek, W., and Gordon, J. G. II, J. Electrochem. Soc., 137, 2672 (1990).Google Scholar
14. Kubaschewaki, O., and Hopkins, B. E., Oxidation of Metals and Alloys (London: Butterworths, 1953).Google Scholar
15. Du, T., Tamboli, D., Desai, V., and Seal, S., J. Eletrochem. Soc., 151, G230 (2004).Google Scholar
16. Molodov, A. I., Markosyan, G. N., Losev, V.V., Soviet Electrochem. 18, 1052 (1982).Google Scholar
17. Hariharaputhiran, M., Zhang, J., Ramarajan, S., Keleher, J. J., Li, Y. and Babu, S. V., J. Electrochem. Soc., 147, 3820 (2000).Google Scholar