Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T04:09:22.871Z Has data issue: false hasContentIssue false

Effect of Hydrogen on The Electronic Structure of a Grain Boundary In Iron

Published online by Cambridge University Press:  26 February 2011

Genrich L. Krasko
Affiliation:
U. S. Army Materials Technology Laboratory, Watertown, MA 02172–0001
Ralph J. Harrison
Affiliation:
U. S. Army Materials Technology Laboratory, Watertown, MA 02172–0001
G. B. Olson
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL,60208
Get access

Abstract

LMTO-ASA calculations were performed on a 26-atom supercell model of a Σ3(111) grain boundary (GB) in bcc Fe. The supercell emulated two GB's with 11 (111)planes of Fe atoms between the GB planes. One of the GB's was clean, with a structural vacancy at the GB core in the center of a trigonal prism of Fe atoms, while on the other GB this site was occupied by a H atom. The interplanar spacings of the supercell were relaxed using a modified embedded atom method. As in the case of P and S in a similar GB environment in Fe there is only a weak interaction between H and nearest Fe atoms. Almost all the Fe d-states are nonbonding. A very weak covalent bond exists between H and Fe due to s-d hybridization, the hybrid bonding part located far below the Fermi energy. This bond is mostly of σ-type, connecting H with the Fe atoms in the GB plane; the δ-component of this bond across the GB is weaker. A weak electrostatic interaction attracts Fe-atoms across the clean GB, but results in repulsion if a H atom is present. The magnetic contribution to intergranular cohesion is decreased when H is present due the suppression of the magnetic moments of the nearest Fe atoms both in the GB plane and directly across the GB.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Briant, C. L. and Banerji, S.K. in Embrittlement of Engineering Alloys (ed. Briant, C. L. and Banerji, S.K.) , Acad. Press, New York, 1983, p. 21;CrossRefGoogle Scholar
1a. Guttmann, M. and. McLean, D. in Interfacial Segregations ( ed. Johnson, W.C. and Blakely, J. M.), ASM, Metals Park, OH, 1979, p. 261 Google Scholar
2. The Theory of Stress Corrosion Cracking in Alloys (ed. Scully, J. C.). NATO, Brussels,1971;Google Scholar
2b. Effect of Hydrogen on Behavior of Materials (ed. Thomson, A. W. and Bernstein, I. M.), A.I.M.E.. New York, 1976;Google Scholar
2c. Stress Corrosion Cracking and Hvdroaen Embrittlement of Iron Base Alloys (ed. Staehle, R. W., Hochmann, J. , McCright, R. D. and Slater, J. E.). NACE-5, Houston, Tex. , 1977;Google Scholar
2d. Hydrogen Deoradation of Ferrous Alloys (ed. Oriani, R. A., Hirth, J. P. and Smialowski, M.). Noyes, Park Ridge, N.J.,1985 Google Scholar
3. Troiano, A. R., Trans. Am. Soc. Met. 52, 54 (1960)Google Scholar
4. Stark, J. P. and Marcus, H. L., Metall. Trans. A, 8A, 1423 (1977);CrossRefGoogle Scholar
4a. Lee, D. Y., Barrera, E. V.,Stark, J. P. and Marcus, H. L., Metall. Trans. A, 15A, 1415 (1984)Google Scholar
5. Meyers, C. L. Jr., Onoda, G. Y., Levy, A. V., and Kotfila, R. J., Trans. Metall. Society of AIME,233, 720 (1965)Google Scholar
6. Seah, M. P., J. Phys. F, 10, 1043 (1980)Google Scholar
7. McLellan, R. B. and Coldwell, D. W., Acta Metall. 23, 57 (1975)Google Scholar
8. Eberhart, M. E., Johnson, K. H. and Latanision, R. M., Acta Metall. 32, 955 (1984);Google Scholar
8a. Eberhart, M. E., Latanision, R. M. and Johnson, K. H. ,Acta Metall., 33, 1769 (1985)Google Scholar
9. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50,1285 (1983);Google Scholar
9a. Daw, M. S. and Baskes, M. I.,in Chemistry and Physics of Fracture (ed. Jones, R. H. and Latanision, R. M.), Martinus Nijhoff, 1987, p.196 Google Scholar
10. Daw, M. S. , Phys. Rev. B 39, 7441 (1989);Google Scholar
10a. Daw, S. W. and Baskes, M. I., Phys. Rev. B 29,6443(1984)Google Scholar
11. Hashimoto, M., Ishida, Y., Yamamoto, R., Doyama, M. and Fujiwara, F., J. Phys. F. 11, L141(1981);Google Scholar
11a. Surface Sci. 144, 182 (1984);CrossRefGoogle Scholar
11b. Hashimoto, M., Ishida, Y., Wakayama, S., Yamamoto, R., Doyama, M. and Fujiwara, F., Acta Met. 32, 13 (1984)Google Scholar
12. Crampin, S., Vvedensky, D. D., MacLaren, J. M. and Eberhart, M. E., Phys. Rev. B 40, 3413(1989)Google Scholar
13. Krasko, G. L. and Olson, G. B., Solid State Commun. 76, 247 (1990)CrossRefGoogle Scholar
14. For references see Gelatt, C. D. Jr., Ehrenreich, H. and Weiss, J. A., Phys. Rev. B 17, 1940 (1978)CrossRefGoogle Scholar
15. Hashimoto, M., Ishida, Y., Yamamoto, R., Doyama, M. and Fujiwara, T., Scripta Met.,16, 267 (1982);Google Scholar
15a. Hashimoto, M., Ishida, Y., Yamamoto, R. and Doyama, M. , Acta Met. 32, 1 (1984);Google Scholar
15b. Ishida, Y. and Mori, M., Journal de Physique, Colloque C4, 46, C4465 (1985)Google Scholar
16. Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984);Google Scholar
16a.A53, 161 (1986)Google Scholar
17. Norskov, J. K., Phys. Rev.B 26, 2875 (1982)Google Scholar
18. Andersen, O. K., Jepsen, O. and GIötzel, D., in Highliahts of Condensed Matter Theory (ed. Bassani, F., Fumi, F. and Tosi, M. P.) North Holland, New York, 1985;Google Scholar
18a. Andersen, O. K., in Electronic Structure of Complex Systems. (ed. Phariseau, P. and Timmerman, W. M.)Plenum, New York, 1984, p. 11 Google Scholar
19. Skriver, H. L., The LMTO Method. Springer, Berlin, 1984 Google Scholar
20. von Barth, U. and Hedin, L., J. Phys. C 5, 1629 (1972)Google Scholar
21. Sikka, S. K., Vohra, Y. K. and Chidambaram, R., in Prooress in Materials Science (ed. Christian, J. W., Haasen, P. and Massalski, T. B.), Pergamon Press, vol 27, 1982, p245 Google Scholar
22. As for the s- components of the Fe impurity bands, they are merely "tails" of the selectron distribution in the H WS sphere.Google Scholar
23. Wang, G. S. and Freeman, A. F., Phys. Rev. B 24, 4364 (1981);Google Scholar
23a. Ohnishl, S. and Freeman, A. F., , Phys. Rev. B 28, 671 (1983)Google Scholar
24. Krasko, G. L. and Olson, G. B., in Innovations on Ultra-High-Strength Steel Technology (ed. Olson, G. B., Azrin, M. and Wright, E. S.), Sagamore Army Materials Research Conference Proceedings, vol 34, U.S. Government Printing Office, Boston, MA, 1990, p. 677 Google Scholar