Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T07:11:02.070Z Has data issue: false hasContentIssue false

Effect of He Pressure on the Superconducting Transition Temperatures of Na2CsC60 and (NH3)4Na2CsC60

Published online by Cambridge University Press:  15 February 2011

J.E Schirber
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0345
W.R. Bayless
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0345
M.J. Rosseinsky
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
O. Zhou
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R.M. Fleming
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D. Murphy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J.E. Fischer
Affiliation:
University of Pennsylvania., Philadelphia, PA 19104-6272
Get access

Abstract

The Na based mixed alkali doped C60 superconductors show anomalous behavior with respect to the “universal” superconducting transition temperature Tc vs lattice constant ao relation followed by most of the fcc A3C60 superconductors. We have measured dTc/dP for Na2CsC60 and (NH3)4Na2CsC60 using solid He as the pressure medium to ∼ 6 kbar finding dTc/dP equal to −0.88±(0.01) K/kbar and −1.0(±0.1) K/kbar for Na2CsC60 and Na2(NH3)4C60 respectively. Our value for Na2CsC60 differs markedly from that obtained by Mizuki et al of about −1.3 K/kbar. However, using N2 or Ar, we obtain values for dTc/dP in substantial agreement with Mizuki et al who used fluorinert to generate their pressure. This work emphasizes the need for compressibility measurements with the same pressure medium in the appropriate temperature range so that meaningful comparisons can be made between various pressure measurements and models which are based on lattice spacing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ramirez, A. P., Superconductivity Review 1, 1(1994).Google Scholar
2. Prassides, K., Christides, C., Thomas, I. M., Mizuki, J., Tanigaki, K., Hirosawa, I. and Ebbesen, T. B., Science 263, 950(1994).Google Scholar
3. Schluter, M., Lannoo, M., Needels, M., Baraff, G. and Tomanek, D., Phys Rev Lett. 68, 526(1992).Google Scholar
4. Varma, C. M., Zaanen, J. and Raghavachari, K., Science 254, 989(1991).Google Scholar
5. Schirber, J. E., Bayless, W. R., Korten, A. R. and Kopylov, N., Physica C 213, 190(1993).Google Scholar
6. Schirber, J. E., Bayless, W. R., Korten, A. R., Rosseinsky, M. J., Ozdas, E., Zhou, O., Fleming, R. M., Murphy, D. and Fischer, J. E., Proc. 185 Mtg Electrochem. Soc., May 1994.Google Scholar
7. Mizuki, J., Takai, M., Takahashi, H., Mori, N., Tanigaki, K., Herosawa, I. and Prassides, K., Phys Rev B 50, 3466(1994).Google Scholar
8. Yildirim, T., Fischer, J. E, Dinnebier, R., Stephens, P. W. and Lin, C. L., Solid State Comm.Google Scholar
9. Zhou, O., Fleming, R. M., Murphy, D. W., Rosseinsky, M. J., Ramirez, A. P., Dover, R. B. Van and Haddon, R. C., Nature 362, 433(1993).Google Scholar
10. Azevedo, L. R., Schirber, J. E., Williams, J. M., Beno, M. and Stephens, D. R., Phys Rev B 30, 1370(1984).Google Scholar
11. Schirber, J. E., Overmyer, D. L., Wang, H., Williams, J., Carlson, K. D., Kini, A., Pellin, M. and Kwok, W. K., Physica C 178, 137(1991).Google Scholar
12. Sparn, G., Thompson, J. D., Huang, S., Kaner, R., Diederish, F., Whetten, R., Gruner, G. and Holczer, K., Science 252, 1829(1991).Google Scholar
13. Samara, G. A., Hansen, L. V., Assink, R. A., Morosin, B. and Schirber, J. E., Phys Rev Letters 67, 3136(1991).Google Scholar
14. Swenson, C. A., J Chem Phys. 23, 1963(1955).Google Scholar