Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T11:51:00.439Z Has data issue: false hasContentIssue false

The Effect of Growth Temperature and Substrate Misorientation on Degree of Order and Antiphase Domain Size in Ga0.52In0.48P Epilayers Grown on GaAs (001) Substrates by Gs-Mbe

Published online by Cambridge University Press:  10 February 2011

C. Meenakarn
Affiliation:
Department of Materials, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK.
A. E. Staton-bevan
Affiliation:
Department of Materials, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BP, UK.
S. P. Najda
Affiliation:
Sharp Laboratories of Europe Ltd, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GA, UK.
G. Duggan
Affiliation:
Sharp Laboratories of Europe Ltd, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GA, UK.
A. H. Kean
Affiliation:
Sharp Laboratories of Europe Ltd, Edmund Halley Road, Oxford Science Park, Oxford OX4 4GA, UK.
Get access

Abstract

A Transmission Electron Microscopy (TEM), Photoluminescence (PL) and Photoluminescence Excitation Spectroscopy (PLE) investigation has been conducted on Ga0.52In0.48P epilayers grown on (001) GaAs substrates by Gas-Source Molecular Beam Epitaxy.For Ga0.52In0.48P epilayers grown on exact (001) GaAs substrates, increasing the growth temperature from 480°C to 535°C increased the antiphase domain plate thickness, t, from 7.3±0.4 to 17.4±0.9 Å, and decreased the long range order parameter, n, from 0.32 to 0.18±0.1. For epilayers grown at 530°C, on GaAs(001) substrates off-cut 0°, 7°, 10° and 15° towards [111]A, increasing the substrate misorientation from 0° to 15° decreased the antiphase domain plate thickness, from 12.3±0.6 to 6.0±0.3 Å. The long range order parameter also decreased from 0.19 to 0.10±0.01.

The band gap energies of these samples, grown by GS-MBE, were close to those reported for fully disordered Ga0.52In0.48P epilayers grown by MOCVD at ∼760°C. This shows that GSMBE is also a good technique to grow GaInP for high band gap optical data storage applications and at lower growth temperatures. The optimum growth conditions in this study were at a growth temperature of 530°C on (001) GaAs substrate with 15° off-cut towards [111]A.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kobayashi, K., Kawata, S., Gomyo, A., Hino, I. and Suzuki, T., Electron. Lett., 21, 931 (1985).Google Scholar
2. Ikeda, M., Mori, Y., Sato, H., Kaneko, K. and Watanabe, N., Appl. Phys. Lett. 47, 1027 (1985).Google Scholar
3. Ishikawa, M., Ohba, Y., Sugawara, H., Yamamoto, M. and Nakanisi, T., Appl. Phys. Lett. 48, 207 (1996).Google Scholar
4. Gomyo, A., Suzuki, T., Kobayashi, K., Kawata, S., Hino, I., and Yuasa, T., Appl. Phys. Lett. 50, 673 (1987).10.1063/1.98062Google Scholar
5. Follstaedt, D. M., Schneider, R. P., Jones, Jr and E. D., J. Appl. Phys. 77, 3077 (1995).10.1063/1.358659Google Scholar
6. Su, L. C., Ho, I. H and Stringfellow, G. B., J. Appl. Phys. 75, 5135 (1994).Google Scholar
7. Bellon, P., Chevalier, J. P., Martin, G. P., Dupont-Nivet, E., Thiebaut, C. and Andre, J. P., Appl. Phys. Lett. 52, 567 (1988).Google Scholar
8. Schneider, R. P. Jr., Jones, E. D., Lott, J. A. and Bryan, R. P., J. Appl. Phys. 72, 5397 (1992).Google Scholar
9. Norman, A. G., Seong, T-Y, Philips, B. A., Booker, G. R. and Mahajan, S., paper presented at Micros. Semicond. Mater. Conf., Inst. Phys. Conf. No. 134, 279 (1993).Google Scholar
10. Kondow, M., Kakibayashi, H., Minagawa, S., Inoue, Y., Nishino, T. and Hamakawa, Y., Appl. Phys. Lett. 53, 2053 (1988).Google Scholar
11. Kondow, M., Kakibayashi, H. and Minagawa, S., J. Cryst. Growth 93, 412 (1988).Google Scholar
12. Valser, A., Liedenbaum, C. T. H. F., Finke, N. M., Severens, A. L. G., Boermans, M. J. B., Vandenhoudt, D. W. W. and Bulle-Lieuwma, C. W. T., J. Cryst. Growth 107, 403 (1991).10.1016/0022-0248(91)90494-PGoogle Scholar
13. Laks, D. B., Wei, S. H. and Zunger, A., Phys. Rev. Lett. 69, 3766 (1992).Google Scholar
14. Ernst, P., Geng, C., Scholz, F., Schweizer, H., Zhang, Y. and Mascarenhas, A., Appl. Phys. Lett. 67, 2347 (1995).Google Scholar
15. Greger, E., Gulden, K. H., Moser, M., Schmiedel, G., Kiesel, P. and Dohler, G. H., Appl. Phys. Lett. 70, 1459 (1997).Google Scholar
16. Dawson, M. D. and Duggan, G., Phys. Rev. B 47, 12598 (1993).Google Scholar
17. Delong, M. C., Mowbray, D. J., Hogg, R. A., Skolnick, M. S., Williams, J E, Meehan, K., Kurts, S. R., Olson, J. M., Schneider, R. P., Wu, M. C., Hopkinson, M., Appl. Phys. Lett. 66,3185 (1995).Google Scholar
18. Liedenbaum, C. T. H. F., Valster, A., Severens, A. L. G. J. and t'Hooft, G. W., Appl. Phys. Lett. 57, 2698 (1990).10.1063/1.104193Google Scholar
19. Baxter, C. S., Stobbs, W. M. and Wilkie, J. K., J. Cryst. Growth 112, 373 (1991).Google Scholar
20. Stringfellow, G. B. and Su, L. C., J. Cryst. Growth 163, 128 (1996).10.1016/0022-0248(95)01054-8Google Scholar