Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T03:35:02.754Z Has data issue: false hasContentIssue false

Effect of Growth Parameters and Local Gas-Phase Concentrations on the Uniformity and Material Properties of GaN/Sapphire Grown by Hydride Vapor-Phase Epitaxy

Published online by Cambridge University Press:  10 February 2011

S. A. Safvi
Affiliation:
Department of Chemical Engineering, University of Wisconsin, Madison, WI 53706.
N. R. Perkins
Affiliation:
Materials Science Program, University of Wisconsin, Madison, WI 53706.
M. N. Horton
Affiliation:
Materials Science Program, University of Wisconsin, Madison, WI 53706.
T. F. Kuech
Affiliation:
Department of Chemical Engineering, University of Wisconsin, Madison, WI 53706. Materials Science Program, University of Wisconsin, Madison, WI 53706.
Get access

Abstract

The effects of flowrate variation and geometry on the growth rate, growth uniformity and crystal quality were investigated in a horizontal Gallium Nitride vapor phase epitaxy reactor. To better understand the effects of these parameters, numerical model predictions are compared to experimentally observed values. Parasitic gas phase reactions between group III and group V sources and deposition of material on the wall are shown to lead to reduced overall growth rates and may be responsible for inferior crystal quality. A low ammonia concentration is correlated with the deposition of polycrystalline films. A low V/III ratio and an ammonia concentration lead to poor crystalline quality and increased yellow luminescence. An optimum HVPE growth process requires selection of reactor geometry and operating conditions to minimize these parasitic reactions and wall deposition while providing a uniform reactant distribution across the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, X., Kung, P., Saxler, A., Walker, D., Wang, T.C., and Razeghi, M., Appl. Phys. Lett. 67, p. 1745 (1995).Google Scholar
2. Detchprohm, T., Hiramatsu, K., Sawaki, N., and Akasaki, I., J. Crystal Growth 137, p. 170 (1994).Google Scholar
3. Shaw, D.W., J.Crystal Growth 31, p. 130 (1975).Google Scholar
4. Maruska, H., and Tietjen, J., Appl. Phys. Lett. 15, p. 327 (1969).Google Scholar
5. Lagerstedt, O. and Monemar, B., J. Appl. Phys., 45, p. 2266 (1974).Google Scholar
6. Beccard, R., Beuven, S., Heime, K., Schmald, R., Jurgensen, H., Harde, P., and Schlak, M., J. Crystal Growth 121, p. 373 (1992).Google Scholar
7. Mochizuki, Y., Usui, A., Handa, S. and Takada, T., J. Crystal Growth 148, p. 96 (1995).Google Scholar
8. Safvi, S.A., Perkins, N.R., Horton, M.N., Thon, A., Zhi, D., and Kuech, TF, Mat. Res. Soc. Symp. Proc. 423, p. 227 (1996).Google Scholar
9. Perkins, N.R., Horton, M.N. and Kuech, T.F., Mat. Res. Soc. Symp. Proc. 395, p. 243 (1995).Google Scholar
10. Bird, R.B. et al., Stewart, W.E. and Lightfoot, E.N., Transport Phenomenon, Wiley, New York 1960.Google Scholar
11. Perry, R.H. * Chilton, C.H., Chemical Engineer's Handbook, 5th ed., McGraw-Hill, New York 1977.Google Scholar
12. Reid, R.C., Prausnitz, J.M. and Sherwood, T.K., The Properties of Gases and Liquids, McGraw-Hill, New York, 1977.Google Scholar
13. Safvi, S.A. and Kuech, T.F., Manuscript submitted to J. Cryst. Growth.Google Scholar
14. Mountziaris, T.J., Kalyanasundram, S. and Ingle, N.K., J. Cryst. Growth, 131, p. 283 (1993).Google Scholar
15. Hirschfelder, J.O. Curtiss, C.F. and Bird, R.B., Molecular Theory of gases and Liquids, Wiley, New York, 1967.Google Scholar
16. Strang, G. * Fix, G., An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, NJ, 1973.Google Scholar
17. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B, 10, p. 1237 (1992).Google Scholar
18. Pankove, J.I. and Hutchby, J.A., J. Appl. Phys., 47, p. 5387 (1976).Google Scholar
19. Ogino, T. and Aoki, M., Jpn J. Appl. Phys. 19, p. 2395 (1980).Google Scholar
20. Glaser, E.R., Kennedy, T.A., Doverspike, K., Rowland, L.B., Gaskill, D.K., Freitas, J.A., Khan, M.A., Olson, D.T., and Kuznia, J.N., Phys. Rev. B 51, p. 13326 (1995).Google Scholar
21. Hack, P., Maekawa, A., Koide, N., Hiramatsu, K., and Sawaki, N., Jpn. J. Appl. Phys. 33, p. 6443 (1994).Google Scholar
22. Ban, V., J. Electrochem Soc., 119, 761 (1972).Google Scholar