Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T22:58:11.504Z Has data issue: false hasContentIssue false

Effect of Fluorine on the Dopant Diffusion of Through-Oxtoe Implanted Boron in Si - a Correlation with Microstructural Defects

Published online by Cambridge University Press:  03 September 2012

J. G. Huang
Affiliation:
Sherman Fairchild Center for Solid State Studies, Lehigh University, PA 18015.
A. Lam
Affiliation:
Sherman Fairchild Center for Solid State Studies, Lehigh University, PA 18015.
R. J. Jaccodine
Affiliation:
Sherman Fairchild Center for Solid State Studies, Lehigh University, PA 18015.
Get access

Abstract

In case of boron through-oxide implant, it has been shown that the knocked-in oxygen atoms segregate at initially nucleated dislocation sites during the incubation and no significant junction movement is detected. The trapping of oxygen proceeds up to a certain time at which oxygen-precipitation occurs and this leads to an ejection of excess Si interstitials and further enhancing boron diffusion. However, with fluorine addition we believe that fluorine incorporation in SiO2 and/or SiO2/Si interface not only releases the strain gradient but also suppresses the silicon interstitials ejection and by this means suppresses the oxidation-enhanced boron diffusion. Correlated results of TEM microdefect structures and spreading resistance profiles are used to further support our postulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Fan, D. and Jaccodine, R. J., Appl. Phys. Lett., 54, 603 (1989).Google Scholar
2. Fan, D. and Jaccodine, R. J., MRS Symp. Proc. 147, 79 (1989).Google Scholar
3. Fan, D. and Jaccodine, R. J., J. Appl. Phys. 67, 6235 (1990).Google Scholar
4. Ehinger, K., Bertagnolli, E., Weng, J., Mahnkopf, R., Kopl, R., and Klose, H., IEEE IEDM Tech. Dig. 459 (1991).Google Scholar
5. Sung, J. M. and Lu, C. -Y., IEEE Elec. Dev. ED-37, 2312 (1990).Google Scholar
6. Fan, D. and Jaccodine, R. J., Appl. Phys. Lett. 59, 1212 (1991).Google Scholar
7. Kim, U. S. and Wolowodiuk, C. H. and Jaccodine, R. J., J. Electrochem. Soc. 137, 229 (1990).Google Scholar
8. Kouvatsos, D., Huang, J. G., and Jaccodine, R. J., J. Electrochem. SOC. 138, 1752 (1991).CrossRefGoogle Scholar
9. Kim, U. S. and Jaccodine, R. J., Appl. Phys. Lett.,49, 1201 (1986).CrossRefGoogle Scholar
10. Kim, U. S. and Jaccodine, R. J., J. Electrochem. Soc. 135, 270 (1988).Google Scholar
11. Park, C., Klein, K. M., Tasch, A. F., Simonton, R. B., and Lux, G. E., IEEE IEDM TEch. Dig. 67 (1991).Google Scholar
12. Wu, N. R., Ling, P., Sadana, D. K., Washburn, J., and Current, M. I., in Proceedings of the Symposium on Defects in Silicon, edited by Murry Bullis, W. and Kimerling, L. C., Electrochem. Soc. Penning, NJ, 1981, p. 282.Google Scholar
13. Ohyu, K., Itoga, T., and Natsuaki, N., J. Appl. Phys. 23, 457 (1990).Google Scholar
14. Wu, I. W. and Chen, L. J., J. Appl. Phys. 58, 3032 (1985).Google Scholar