Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-28T15:00:21.660Z Has data issue: false hasContentIssue false

Effect of External Gamma Irradiation on Dissolution of the UO2 Matrix

Published online by Cambridge University Press:  17 March 2011

C. Jégou
Affiliation:
Commissariat à l'Énergie Atomique (CEA), Rhône Valley Research Center 30207 Bagnols-sur-Cèze Cedex, France, christophe.jegou@cea.fr
B. Muzeau
Affiliation:
Commissariat à l'Énergie Atomique (CEA), Rhône Valley Research Center 30207 Bagnols-sur-Cèze Cedex, France
V. Broudic
Affiliation:
Commissariat à l'Énergie Atomique (CEA), Rhône Valley Research Center 30207 Bagnols-sur-Cèze Cedex, France
S. Peuget
Affiliation:
Commissariat à l'Énergie Atomique (CEA), Rhône Valley Research Center 30207 Bagnols-sur-Cèze Cedex, France
A. Poulesquen
Affiliation:
Commissariat à l'Énergie Atomique (CEA), Rhône Valley Research Center 30207 Bagnols-sur-Cèze Cedex, France
D. Roudil
Affiliation:
Commissariat à l'Énergie Atomique (CEA), Rhône Valley Research Center 30207 Bagnols-sur-Cèze Cedex, France
Get access

Abstract

Leaching experiments were done on UO2 pellets doped with alpha-emitters (238/239Pu, 1500 - year batch), in the presence of an external gamma irradiation source (A60Co = 260 Ci, γ dose rate = 650 Gy h−1). The effects of α and γ radiation and the nature of the cover gas (air or Ar + 4% H2) on water radiolysis, and on oxidizing dissolution of the UO2 matrix, are quantified and discussed. The cover gas clearly has a major role in the effect of γ radiolysis. The dissolution rate in an aerated medium is 83 mg m−2 d−1 compared with only 6 mg m−2 d−1 in Ar + 4% H2. The rate drop is accompanied by a reduction of about four orders of magnitude in the hydrogen peroxide concentrations in the homogeneous solution. The UO2 alteration rate under gamma radiation in Ar + 4% H2 is comparable to the rate obtained in the presence of alpha radiolysis alone for the doped UO2 pellets with the highest alpha activities (4.75 × 108 Bq/g UO2, 15 - year batch).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shoesmith, D.W., J. Nucl. Mater., 282, 131 (2000).Google Scholar
2.C. Jégou, Broudic, V., Poulesquen, A., Bart, J.M., Mat. Res. Soc. Symp. Proc. Kalmar 2003 (in press).Google Scholar
3. Christensen, H. and Sunder, S., Nuclear Technology, 131, 102123 (2000).Google Scholar
4. Kirkegaard, P. and Bjergbakke, E., Chemsimul, a program package for numerical simulation of chemical reaction systems. November 20, 1998. Riso National Laboratory DK-4000 Roskilde Denmark (1998).Google Scholar
5. Christensen, H. and Sunder, S., J. Nucl. Mater., 238, 70 (1996).Google Scholar
6. Sattonnay, G., Ardois, C., Corbel, C., Lucchini, J.F., Barthe, M.F., Garrido, F. and Gosset, D., J. Nucl. Mater., 288, 11 (2001).Google Scholar
7. Vitorge, P., Capdevilla, H., Maillard, S., Faure, M.H., Vercouter, T., J. Nucl. Sci. Technol, Supplement 3, P713716 (2002).Google Scholar