Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T01:23:49.406Z Has data issue: false hasContentIssue false

Effect of Electrodes on Crystallization and Electrical Properties of Ferroelectric Pzt Films Deposited by Rf Magnetron Sputtering

Published online by Cambridge University Press:  10 February 2011

B. Ea-Kim
Affiliation:
Université de Paris Sud, BP 127,91403 ORSAY CEDEX FRANCE
F. Varniere
Affiliation:
Université de Paris Sud, BP 127,91403 ORSAY CEDEX FRANCE
M. C. Hugon
Affiliation:
Université de Paris Sud, BP 127,91403 ORSAY CEDEX FRANCE
B. Agius
Affiliation:
Université de Paris Sud, BP 127,91403 ORSAY CEDEX FRANCE
R. Bisaro
Affiliation:
Thomson-CSF LCR, Domaine de Corbeville, 91404 ORSAY CEDEX FRANCE.
J. Olivier
Affiliation:
Thomson-CSF LCR, Domaine de Corbeville, 91404 ORSAY CEDEX FRANCE.
Get access

Abstract

The electrical properties and crystallization process of Pb(Zr0.4, Ti0.6)O3 or PZT thin films grown by rf magnetron sputtering, from ceramic target, on fiber-textured (111)Pt/TiN/Ti/SiO2/Si and polycrystalline RuOx/SiO2/Si have been studied. It is found that the amorphous as-deposited thin film, processed by rapid thermal annealing (RTA), is transformed to a perovskite PZT at about 700°C. It is pointed out that the “heating rates” to reach 700°C affect the electrical properties of such films: TEM analysis reveal different grain sizes as a function of the heating rate. The XRD show that an oriented (111) PZT is promoted when the film is annealed to the temperatures of 800°C for 5 secondes. For these annealing conditions, the electrical properties of such structure depend strongly on the deposition conditions of PZT. Our process studies show that a thin film PZT deposited on Pt or RuO1.65 at 200°C and 1 Pa argon pressure gives good hysteresis loop with high values of Ps and Pr (about 20 and 30 μC/cm2 on Pt and RuO1.65 respectively) and low leakage current about 10−11 A/cm2 on Pt and 10−6 A/cm2 on RuO1.65.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1). Hearting, G. H., J. Vac. Sci. Technol. A 9 414 (1991).Google Scholar
(2). Parker, L. H. and Tarsch, A. R.: IEEE Circuit & Device Mag. 6 17 (1990).Google Scholar
(3). Fox, G. R. and Krupanidhi, S. B., J. Mater. Res. 9, 699 (1994).Google Scholar
(4). Spierings, G. A. C. M., Ulenaers, M. J. E., Kampschoer, G. L. M., Hal, H. A. M. van, and Larsen, P. K., J. Appl. Phys. 70 (4), 2290 (1991).Google Scholar
(5). Sreenivas, K., Reaney, I., Maeder, T., Setter, N., Jagadish, C., and Elliman, R. G., J. Appl. Phys. 75 (1), 232 (1994).Google Scholar
(6). Cattan, E., Agius, B., Achard, H, Wong, J.C. Cheang, Ortega, C., Siejka, J., J. Vac. Sci. Technol. 11, 2808 (1993).Google Scholar
(7). Kim, B. Ea, Varniere, F., Agius, B. and Bisaro, R., Microelectronic Engineering, 29,231234(1995)Google Scholar
(8). Reaney, I. M., Brooks, K., Klissurka, R., Setter, N., J. Am. Cram. Soc,77(5)1209–16 (1994).Google Scholar