Skip to main content Accessibility help
×
Home

The Effect of Crystallographic Imperfections on the Photoluminescence of ZnO Thin Films

  • Matthew W. Kelly (a1), Tom N. Oder (a2) and C. Virgil Solomon (a3)

Abstract

ZnO thin films were synthesized by radio-frequency (RF) magnetron sputtering of high purity ZnO solid targets on sapphire substrates. Depositions were carried out at selected temperatures between 293 K and 1173 K, and post-deposition annealing was performed at 1173 K for 3 min. in an O2 atmosphere. Samples for electron microscopy investigations were prepared by lift-out technique in a multi-beam FIB/SEM instrument. The ZnO thin films show generally uniform thickness (about 1µm), determined by transmission electron microscopy (TEM) imaging. Irrespective of the deposition temperature, the ZnO thin films are polycrystalline, with individual grains exhibiting columnar morphology with the long axis oriented perpendicular to the ZnO/sapphire interface. The grain size varies with the deposition temperature, and a direct correlation between grain size and photoluminescence has been observed. Analyses performed using low-temperature photoluminescence spectroscopy measurements at 12 K revealed luminescence peaks at 3.361, 3.317, 3.218 and 3.115 eV. The intensity of the luminescence peak at 3.317 eV decreased with increasing deposition temperature. The films deposited at lower temperatures also exhibited a higher density of stacking faults as observed from the atomic resolution TEM. The crystallographic imperfections/photoluminescence relationship is not clear. The purpose of this study is to quantify the observed crystallographic imperfections and understand their effect on the photoluminescence of undoped ZnO thin films deposited on sapphire substrates.

Copyright

References

Hide All
[1] Jin, B. J., Im, S., and Lee, S. Y., Thin Solid Films, vol. 366, no. 1, pp. 107110, 2000.
[2] Schirra, M., Schneider, R., Reiser, A., Prinz, G. M., Feneberg, M., Biskupek, J., Kaiser, U., Krill, C. E., Thonke, K., and Sauer, R., Phys. Rev. B, vol. 77, no. 12, Mar. 2008.
[3] Oder, T.N., Smith, A., Freeman, M., McMaster, M., Cai, B., and Nakarmi, M.L., J. Electronic Mater. DOI: 10.1007/s11664-014-3074-9, 2014.
[4] Look, D. C., Renlund, G. M., Burgener, R. H., and Sizelove, J. R., Appl. Phys. Lett., vol. 85, no. 22, p. 5269, 2004.
[5] Ohtomo, A., Kawasaki, M., Sakurai, Y., Yoshida, Y., Koinuma, H., Yu, D., Tung, Z.K., Wong, G.K.L., and Segawa, Y., Mater. Sci. Eng. 1354, 24, 1998.
[6] Bethke, S., Pan, H., and Wessels, B.W., Appl. Phys. Lett. 52, 138, 1988.
[7] Mayer, B.K., Alvies, H., Hoffman, D.M., Kriegseis, W., Forester, D., Bertraim, F., Christen, J., Hoffman, A., Straburg, M., Dworzak, M., Haboeck, U., and Rodina, A.V., Phy. Status Solidi B 241, 231, 2004.
[8] Hwang, D.K., kim, H.S., Lim, J.H., Oh, J.Y., Yang, J.H., Park, S.J., Kim, K.K., Look, D.C., and Park, Y.S., Appl. Phys. Lett. 86, 151917, 2005.
[9] Wagner, M.R., Callsen, G., Reparaz, J.S., Schulze, J.-H., Kirste, R., Hoffman, A., Rodina, A.V., Phillips, M.R., Lautenschlager, S., Eisermann, S., and Meyer, B.K., Phys. Rev. B 84, 035313, 2011.
[10] Wagner, M.R., Zimmer, P., Hoffman, A., and Thomsen, C., Phys. Status Solidi (RRL), 1, 169, 2007.
[11] Fonoberov, V.A., Alim, K.A., Balandin, A.A., Xiu, F., and Liu, J., Phys. Rev. B 73, 165317, 2006.
[12] Look, D.C. and Claflin, B., Phys. Status Solidi, B 241, 624, 2004.
[13] Yang, S., Kuo, C.C., Liu, W.-R., Lin, B.H., Hsu, H.-C., Hsu, C.-H., and Hsieh, W.F., Appl. Phys. Lett. 100, 101907, 2012.
[14] Duclere, J.R., Doggett, B., Henry, M.O., McGlynn, E., Rajendra Kumar, R.T., Mosnier, J.-P., Perrin, A., and Guilloux-Viri, M., J. Appl. Phys. 101, 013509, 2007.
[15] Yang, S., Lin, B.H., Liu, W.-R., Lin, J.-H., Chang, C.-S., Hsu, C.H., and Hsieh, W.F., Crystal Growth & Design, vol. 9, 51845189, 2009.
[16] Giannuzzi, L.A., Kempshall, B.W., Schwarz, S.M., Lomness, J.K., Prenizer, B.I., and Stevie, F.A., Introduction to Focused Ion Beam, Springer, pp. 201228, 2005.
[17] Yang, S., Lin, B.H., kuo, C.C., Hsu, H.C., Liu, W.-R., Erikssson, M.O., Holtz, P.-O., Chang, C.-S., Hsu, C.-H., and Hsieh, W.F., Crystal Growth & Design, 12, 47454751, 2012.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed